Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Cell Dev Biol ; 12: 1348707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100092

RESUMEN

Background: Cancer cell evasion of the immune response is critical to cancer development and metastases. Clinicians' ability to kickstart the immune system to target these rogue cells is an ever-growing area of research and medicine. This study delved into the relationship between lipid metabolism, High Mobility Group Box 1 protein (HMGB1)-a pro-inflammatory damage-associated molecular pattern protein-and immune regulation within non-small cell lung adenocarcinoma (NSCLC). Method: To address this question, we used a combination of proteomics, molecular biology, and bioinformatic techniques to investigate the relationship between fatty acids and immune signals within NSCLC. Results: We found that the expression of stearoyl CoA desaturase 1 (SCD1) was decreased in NSCLC tumors compared to normal tissues. This emphasized the critical role of lipid metabolism in tumor progression. Interestingly, monounsaturated fatty acid (MUFA) availability affected the expression of programmed death ligand-1 (PD-L1), a pivotal immune checkpoint target in lung cancer cells and immune cells, as well as HMGB1, suggesting a novel approach to modulating the immune response. This study uncovered a complex interplay between SCD1, PD-L1, and HMGB1, influencing the immunological sensitivity of tumors. Conclusion: Our work underscores the critical importance of understanding the intricate relationships between lipid metabolism and immune modulation to develop more effective NSCLC treatments and personalized therapies. As we continue to explore these connections, we hope to contribute significantly to the ever-evolving field of cancer research, improving patient outcomes and advancing precision medicine in NSCLC.

2.
Front Immunol ; 14: 1138920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346039

RESUMEN

Introduction: Inhibitors of the ATR kinase act as radiosensitizers through abrogating the G2 checkpoint and reducing DNA repair. Recent studies suggest that ATR inhibitors can also increase radiation-induced antitumor immunity, but the underlying immunomodulating mechanisms remain poorly understood. Moreover, it is poorly known how such immune effects relate to different death pathways such as caspase-dependent apoptosis. Here we address whether ATR inhibition in combination with irradiation may increase the presentation of hallmark factors of immunogenic cell death (ICD), and to what extent caspase activation regulates this response. Methods: Human lung cancer and osteosarcoma cell lines (SW900, H1975, H460, U2OS) were treated with X-rays and ATR inhibitors (VE822; AZD6738) in the absence and presence of a pan-caspase inhibitor. The ICD hallmarks HMGB1 release, ATP secretion and calreticulin surface-presentation were assessed by immunoblotting of growth medium, the CellTiter-Glo assay and an optimized live-cell flow cytometry assay, respectively. To obtain accurate measurement of small differences in the calreticulin signal by flow cytometry, we included normalization to a barcoded control sample. Results: Extracellular release of HMGB1 was increased in all the cell lines at 72 hours after the combined treatment with radiation and ATR inhibitors, relative to mock treatment or cells treated with radiation alone. The HMGB1 release correlated largely - but not strictly - with loss of plasma membrane integrity, and was suppressed by addition of the caspase inhibitor. However, one cell line showed HMGB1 release despite caspase inhibition, and in this cell line caspase inhibition induced pMLKL, a marker for necroptosis. ATP secretion occurred already at 48 hours after the co-treatment and did clearly not correlate with loss of plasma membrane integrity. Addition of pan-caspase inhibition further increased the ATP secretion. Surface-presentation of calreticulin was increased at 24-72 hours after irradiation, but not further increased by either ATR or caspase inhibition. Conclusion: These results show that ATR inhibition can increase the presentation of two out of three ICD hallmark factors from irradiated human cancer cells. Moreover, caspase activation distinctly affects each of the hallmark factors, and therefore likely plays a dual role in tumor immunogenicity by promoting both immunostimulatory and -suppressive effects.


Asunto(s)
Caspasas , Proteína HMGB1 , Humanos , Caspasas/metabolismo , Proteína HMGB1/metabolismo , Calreticulina/metabolismo , Inhibidores de Caspasas , Muerte Celular Inmunogénica , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas , Adenosina Trifosfato , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
3.
Front Mol Biosci ; 10: 1146685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865384

RESUMEN

Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.

4.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36467615

RESUMEN

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

5.
Front Cell Infect Microbiol ; 12: 927193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034701

RESUMEN

Previous researches have emphasized a trypsin-centered theory of acute pancreatitis (AP) for more than a century. With additional studies into the pathogenesis of AP, new mechanisms have been explored. Among them, the role of immune response bears great importance. Pro-inflammatory substances, especially damage-associated molecular patterns (DAMPs), play an essential role in activating, signaling, and steering inflammation. Meanwhile, activated neutrophils attach great importance to the immune defense by forming neutrophil extracellular traps (NETs), which cause ductal obstruction, premature trypsinogen activation, and modulate inflammation. In this review, we discuss the latest advances in understanding the pathological role of DAMPs and NETs in AP and shed light on the flexible crosstalk between these vital inflammatory mediators. We, then highlight the potentially promising treatment for AP targeting DAMPs and NETs, with a focus on novel insights into the mechanism, diagnosis, and management of AP.


Asunto(s)
Trampas Extracelulares , Pancreatitis , Enfermedad Aguda , Alarminas , Humanos , Inflamación , Neutrófilos
6.
Cytokine X ; 4(2-3): 100066, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35656386

RESUMEN

Systemic lupus erythematosus (SLE) is a global chronic autoimmune disease that invades most organs of the body, with kidney injury being the most prominent feature. Exosomes are extracellular vesicles that carry a variety of proteins, lipids and genetic material, participate in the exchange of local and intersystem information, and play an important immunoregulatory role in a variety of autoimmune diseases. At the same time, the use of exosomes as disease biomarkers and drug delivery carriers also shows great application prospects. This article reviews current progress in the application of exosomes in the pathogenesis, diagnosis and treatment of SLE.

7.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530162

RESUMEN

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

8.
Front Pediatr ; 10: 868269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558368

RESUMEN

Objective: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, a novel syndrome known as a multisystem inflammatory syndrome in children (MIS-C) was reported in previously healthy children. A possible pro-inflammatory molecule, high-mobility group box 1 (HMGB1), may be assumed to play an important role in the pathogenesis and clinical presentation of MIS-C. We described the clinical picture of patients with MIS-C and we also aimed to test and compare HMGB1 serum levels of MIS-C patients with those of patients with previous SARS-CoV2 infection and healthy children. Study design: We determined HMGB1 levels by Western blot in 46 patients and divided them into three groups, namely, five patients with MIS-C (median age: 8.36 years), 20 children with a history of SARS-CoV-2 infection (median age: 10.45 years), and 21 healthy children (controls) (median age: 4.84 years), without evidence of respiratory infection in the last 3 months. Results: The median level of HMGB1 in the serum of five patients with MIS-C was found to be significantly higher compared with both patients with a recent history of COVID-19 (1,151.38 vs. 545.90 densitometric units (DU), p = 0.001) and control (1,151.38 vs. 320.33 DU, p = 0.001) groups. The HMGB1 level in MIS-C patients with coronary involvement had a slightly higher value with respect to patients without coronary dilatation (1,225.36 vs. 1,030.49 DU, p = 0.248). In two of the five children with MIS-C that performed a follow-up, the HMGB1 value decreased to levels that were superimposable to the ones of the control group. Conclusion: The significantly high level of HMGB1 protein found in the serum of COVID-19 and patients with MIS-C supports its involvement in inflammatory manifestations, suggesting HMGB1 as a potential biomarker and therapeutic target in patients with severe illness.

9.
Front Immunol ; 13: 868679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401579

RESUMEN

Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.


Asunto(s)
COVID-19 , Enfermedades Vasculares , COVID-19/complicaciones , Células Endoteliales/metabolismo , Endotelio , Humanos , Ácido Láctico/metabolismo , SARS-CoV-2 , Enfermedades Vasculares/patología
10.
Acta Pharm Sin B ; 12(1): 92-106, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127374

RESUMEN

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

11.
Acta Pharm Sin B ; 12(1): 378-393, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127393

RESUMEN

The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.

12.
JACC Basic Transl Sci ; 7(1): 28-50, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35128207

RESUMEN

In peripheral arterial disease (PAD), the degree of endogenous capacity to modulate revascularization of limb muscle is central to the management of leg ischemia. To characterize the multiscale and multicellular nature of revascularization in PAD, we have developed the first computational systems biology model that mechanistically incorporates intracellular, cellular, and tissue-level features critical for the dynamic reconstitution of perfusion after occlusion-induced ischemia. The computational model was specifically formulated for a preclinical animal model of PAD (mouse hindlimb ischemia [HLI]), and it has gone through multilevel model calibration and validation against a comprehensive set of experimental data so that it accurately captures the complex cellular signaling, cell-cell communication, and function during post-HLI perfusion recovery. As an example, our model simulations generated a highly detailed description of the time-dependent spectrum-like macrophage phenotypes in HLI, and through model sensitivity analysis we identified key cellular processes with potential therapeutic significance in the pathophysiology of PAD. Furthermore, we computationally evaluated the in vivo effects of different targeted interventions on post-HLI tissue perfusion recovery in a model-based, data-driven, virtual mouse population and experimentally confirmed the therapeutic effect of a novel model-predicted intervention in real HLI mice. This novel multiscale model opens up a new avenue to use integrative systems biology modeling to facilitate translational research in PAD.

13.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34401226

RESUMEN

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

14.
Biochem Biophys Rep ; 28: 101181, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34934826

RESUMEN

The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18ß-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 â†’ 2)-glucuronyl] 18ß-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased ß-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.

15.
Acta Pharm Sin B ; 11(10): 2983-2994, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729299

RESUMEN

Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.

16.
J Bone Oncol ; 30: 100387, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34504741

RESUMEN

Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenesis of sensory nerves (SNs) in harmony with sensitization and excitation of SNs in response to the tumor microenvironment created in bone. Importantly, CABP is associated with increased mortality, of which precise cellular and molecular mechanism remains poorly understood. Bone is densely innervated by autonomic nerves (ANs) (sympathetic and parasympathetic nerves) and SNs. Recent studies have shown that the nerves innervating the tumor microenvironment establish intimate communications with tumors, producing various stimuli for tumors to progress and disseminate. In this review, our current understanding of the role of SNs innervating bone in the pathophysiology of CABP will be overviewed. Then the hypothesis that SNs facilitate cancer progression in bone will be discussed in conjunction with our recent findings that SNs play an important role not only in the induction of CABP but also the progression of bone metastasis using a preclinical model of CABP. It is suggested that SNs are a critical component of the bone microenvironment that drives the vicious cycle between bone and cancer to progress bone metastasis. Suppression of the activity of bone-innervating SNs may have potential therapeutic effects on the progression of bone metastasis and induction of CABP.

17.
Front Immunol ; 12: 675731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234778

RESUMEN

High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called "danger signal" and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-ß), displaying autocrine/paracrine activities. TGF-ß induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages).


Asunto(s)
Galectinas/biosíntesis , Proteína HMGB1/fisiología , Neoplasias/inmunología , Receptor Toll-Like 4/fisiología , Humanos , Tolerancia Inmunológica , Células THP-1 , Factor de Crecimiento Transformador beta1/fisiología
18.
Phytomed Plus ; 1(3): 100043, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35399823

RESUMEN

Background: Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. Purpose: The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. Methodology: We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo).  These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). Results: Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. Conclusion: The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.

19.
J Bone Oncol ; 26: 100330, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33204606

RESUMEN

Bone pain is a common complication of breast cancer (BC) bone metastasis and is a major cause of increased morbidity and mortality. Although the mechanism of BC-associated bone pain (BCABP) remains poorly understood, involvement of BC products in the pathophysiology of BCABP has been proposed. Aggressive cancers secrete damage-associated molecular patterns (DAMPs) that bind to specific DAMP receptors and modulate cancer microenvironment. A prototypic DAMP, high mobility group box 1 (HMGB1), which acts as a ligand for the receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs), is increased in its expression in BC patients with poor outcomes. Here we show that 4T1 mouse BC cells colonizing bone up-regulate the expression of molecular pain markers, phosphorylated ERK1/2 (pERK) and pCREB, in the dorsal root ganglia (DRGs) innervating bone and induced BCABP as evaluated by hind-paw mechanical hypersensitivity. Importantly, silencing HMGB1 in 4T1 BC cells by shRNA reduced pERK and pCREB and BCABP with decreased HMGB1 levels in bone. Further, administration of a neutralizing antibody to HMGB1 or an antagonist for RAGE, FPS-ZM1, ameliorated pERK, pCREB and BCABP, while a TLR4 antagonist, TAK242, showed no effects. Consistent with these in vivo results, co-cultures of F11 sensory neuron-like cells with 4T1 BC cells in microfluidic culture platforms increased neurite outgrowth of F11 cells, which was blocked by HMGB1 antibody. Our results show that HMGB1 secreted by BC cells induces BCABP via binding to RAGE of sensory neurons and suggest that the HMGB1/RAGE axis may be a potential novel therapeutic target for BCABP.

20.
JHEP Rep ; 3(1): 100176, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33205036

RESUMEN

The term acute-on-chronic liver failure (ACLF) defines an abrupt and life-threatening worsening of clinical conditions in patients with cirrhosis or chronic liver disease. In recent years, different definitions and diagnostic criteria for the syndrome have been proposed by the major international scientific societies. The main controversies relate to the type of acute insult (specifically hepatic or also extrahepatic), the stage of underlying liver disease (cirrhosis or chronic hepatitis) and the concomitant extrahepatic organ failure(s) that should be considered in the definition of ACLF. Therefore, different severity criteria and prognostic scores have been proposed and validated. Current evidence shows that the pathophysiology of ACLF is closely associated with an intense systemic inflammation sustained by circulating pathogen-associated molecular patterns and damage-associated molecular patterns. The development of organ failures may be a result of a combination of tissue hypoperfusion, direct immune-mediated damage and mitochondrial dysfunction. Management of ACLF is currently based on the supportive treatment of organ failures, mainly in an intensive care setting. For selected patients, liver transplantation is an effective treatment that offers a good long-term prognosis. Future studies on potential mechanistic treatments that improve patient survival are eagerly awaited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA