Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
PeerJ ; 12: e17814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157764

RESUMEN

The aim of this study was to evaluate the effect of starvation and refeeding on the growth and food intake of gilthead seabream (Sparus aurata) and seabass (Dicentrarchus labrax) and on the growth and nitrogen uptake of glasswort (Salicornia europaea) in a polyculture aquaponic system under 12 ppt salinity for 75 days. Nine small-scale autonomous aquaponic systems were used, each containing 10 gilthead seabreams (average weight of 6.33 ± 0.73 g and average length of 5.73 ± 0.72 cm) and 10 seabasses (5.82 ± 0.77 g and 6.35 ± 0.45 cm), as well as five glasswort plants. Three fish feeding treatments were performed, a control (A), in which fish were fed daily until satiation, and two fasting treatments for 4 (B) and 7 days (C). Fish growth performance was significantly lower (p < 0.05) in the C treatment for both species compared to treatments A and B. Food consumption (FC) and feed conversion ratio (FCR) were significantly higher (p < 0.05) in treatment C. Glasswort growth performance was significantly higher in treatment C (p < 0.05). The results showed that the 4-day food-deprived fish were similar to the control fish by achieving partial compensatory growth. The more extended fasting period (7 days) resulted in significantly lower growth performance. The lipid and nitrogen retention levels in both species were significantly lower in food-deprived fish than in the control fish both before and during compensatory growth. The results suggest that a feeding schedule involving starvation-refeeding cycles is a promising feed management option for these species in polyculture aquaponic systems. The effect of food deprivation was also significantly beneficial (p < 0.05) for the growth performance of glasswort compared to the control treatment.


Asunto(s)
Lubina , Dorada , Animales , Dorada/crecimiento & desarrollo , Dorada/fisiología , Lubina/crecimiento & desarrollo , Lubina/fisiología , Inanición , Chenopodiaceae/metabolismo , Chenopodiaceae/crecimiento & desarrollo , Acuicultura/métodos , Alimentación Animal/análisis , Nitrógeno/metabolismo , Técnicas de Cocultivo
2.
J Plant Physiol ; 291: 154124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944241

RESUMEN

Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.


Asunto(s)
Chenopodiaceae , Plantas Tolerantes a la Sal , Humanos , Rayos Ultravioleta , Carotenoides , Fotosíntesis
3.
Nutrients ; 15(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37432154

RESUMEN

Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.


Asunto(s)
Artemisia annua , Chenopodiaceae , Animales , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , LDL-Colesterol
4.
Foods ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36496624

RESUMEN

Sodium chloride (NaCl) is a key ingredient in the processing of traditional dry-cured meat products by improving microbial safety, sensory attributes and technological properties. However, increasing concern about the consumption of sodium and health has been supporting the development of low-sodium meat products. Several strategies to reduce sodium in dry-cured meat product have been tested, although the followed approaches sometimes result in undesirable characteristics concerning flavor, texture and mouthfeel. The use of halophytic plants such as glasswort (Salicornia herbacea) in food matrices has been suggested as a novel strategy to reduce sodium content, due its salty flavor. The main aim of the present study is to produce traditional dry-cured pork bellies from the Bísaro breed using glasswort as a NaCl partial replacer, and compare it with dry-cured bellies salted either with NaCl or a mix of NaCl + KCl. Control bellies (BC) were salted with 100% of NaCl, the second formulation (BK) had 50% of NaCl and 50% of KCl, and the third formulation (BG) had 90% of NaCl and 10% of glasswort powder (GP). After production, the bellies were evaluated for aw, pH, CIELab coordinates, weight loss, proximal composition, TBARS, collagen and chloride contents, fatty acid profile and sensory attributes. The use of BG in dry-cured pork bellies did not affect processing indicators such as weight loss, aw and pH. Concerning CIELab, only the coordinates L* and hue angle from the external surface color of BG were statistically different from BC and BK. As expected, ash and NaCl contents differed from BG to the other two formulations. SFA and indexes AI and TI were lower, whereas the MUFA and h/H ratio were higher in BG than other treatments, leading to a product with a healthier lipid profile. The sensory evaluation revealed differences in appearance, taste and flavor among treatments, but did not indicate any negative effects of BG in the product attributes. This study reinforces the potential of BG as a natural sodium reducer for the production of traditional dry-cured pork bellies.

5.
Phytochemistry ; 200: 113207, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35460711

RESUMEN

Saltmarsh plants have several defense mechanisms against threatening abiotic conditions, such as salinity, inundation, or exposure to intense radiation, less is known regarding response to insect pests attack. Salicornia europaea L. plant stands are produced as cash crops in Portuguese coastal areas. In 2017, these crops suffered significant attacks from a gall midge fly (Baldratia salicorniae Kieffer), reducing its economic value. To understand how this attack influenced S. europaea chemical composition, infested and non-infested branches were collected, and their extracts were analysed by GS-MS and UHPLC-MS. Results revealed that different degrees of infestations displayed different chemical composition. Several compounds were for the first time identified in S. europaea, such as, arachidic acid, alpha-tocopherol, henicos-1-ene, and squalene. Most evident results were the reduced amount of alkanes in the infested conditions, which seems to be a direct consequence of insect infestation. Several compounds identified in the infested branches are known to have negative effects on insect larvae by reducing larval growth (linoleic acid) or increasing insect mortality (oleic acid). Halophyte plants production is increasing and it is accompanied by the urge to develop early control strategies against potential pests. These strategies may include ecological friendly solutions such as endogenous production of specialized metabolites to retrieve plant self-defences. Further, our results showed that B. salicorniae herbivory also induced the production of higher number of specialized metabolites with important known biological activities. In years in which high infestations reduce organoleptic qualities for fresh consumption plants can be used in biorefinery industries for metabolite extraction.


Asunto(s)
Chenopodiaceae , Dípteros , Animales , Dípteros/fisiología , Larva , Salinidad , Plantas Tolerantes a la Sal
6.
Environ Sci Pollut Res Int ; 29(31): 47800-47809, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35190989

RESUMEN

Two field experiments were conducted to evaluate six Salicornia species (Salicornia bigelovii Torr., S. europaea L., S. persica Gorgan ecotype, S. persica Urmia ecotype, S. sinus persica Bushehr ecotype, and S. persica Central Plateau ecotype) at different planting dates and densities under irrigation with Persian Gulf water. Evaluated planting dates were 14 November and 18 December 2016 and 16 January, 8 February, 8 March, and 28 March 2017. Examined planting densities included 13, 20, and 40 plant m-2. Only S. bigelovii and S. europaea produced measurable yield in all planting dates. The highest dry weight (651.1 gm-2) was obtained in S. sinus persica (Bu) planted on 8 February. Dry weight of S. bigelovii, S. europaea, S. sinus persica Bushehr, S. persica Central Plateau, S. persica Gorgan, and S. persica Urmia planted on 8 March were 174.2, 220.7, 542.5, 240.9, 158.0, and 147.5 g m-2, respectively. The ash contents of S. bigelovii, S. europaea, S. sinus persica Bushehr, S. persica Central Plateau, S. persica Gorgan, and S. persica Urmia were 46.3%, 45.0%, 49.6%, 49.6%, 50.0%, and 53.1%, respectively. Sodium and chloride contents of different Salicornia species varied from 13-15% and 16-17%, respectively. The oilseed content of S. bigelovii and S. sinus persica Bushehr was about 24.0% for both species. The highest and lowest dry weight, from the second experiment, were for S. sinus persica Bushehr and S. persica Central Plateau, respectively, in all planting density. The highest dry weight equal to 1336.2 gm-2 was obtained for S. sinus persica Bushehr in 40 plant m-2 density. Under such conditions, forage production potential of Salicornia is more achievable rather than seed production. Nevertheless, high ash content is a serious constraint to direct consumption by livestock; therefore, determining the nutritional value of Salicornia fodder requires further evaluations.


Asunto(s)
Chenopodiaceae , Estudios de Factibilidad , Plantas Tolerantes a la Sal , Agua de Mar , Sodio
7.
Asian-Australas J Anim Sci ; 33(4): 662-669, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31480199

RESUMEN

OBJECTIVE: This study was conducted to evaluate the effect of red glasswort (RG) (Salicornia herbacea L.) curing on the physicochemical, textural and sensory properties of cooked pork loin ham (M. longissimus thoracis et lumborum). METHODS: All treatments were cured with different salt and RG powder levels. RG0 treatment was prepared with only 4% NaCl (w/w) as a control, and RG25, 3% NaCl:1% RG (w/w); RG50, 2% NaCl:2% RG (w/w); RG75, 1% NaCl:3% RG (w/w); RG100, 0% NaCl:4% RG (w/w) treatments were prepared sequentially. All samples were individually vacuum packaged in polyethylene bags and stored for 7 d at 3°C±1°C. RESULTS: The results showed that as the rate of RG substitution increased, pH value, redness, myofibrillar protein solubility, and myofibrillar fragmentation index increased (p<0.05), but salt concentration and shear force decreased (p<0.05). However, there were no significant differences in cooking loss and moisture content. In terms of sensory evaluation, RG100 exhibited higher scores in tenderness and juiciness than RG0 (p<0.05). CONCLUSION: The partial substitution of NaCl by RG could improve the physicochemical properties, textural and sensory characteristics of cooked pork loin. Therefore, it is suggested that RG as a natural salt replacer could be an effective ingredient for developing low-sodium cured hams.

8.
BMC Plant Biol ; 19(1): 427, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619171

RESUMEN

BACKGROUND: Salicornia europaea, a succulent obligatory halophyte is the most salt-tolerant plant species in the world. It survives salt concentrations of more than 1 M. Therefore, it is a suitable model plant to identify genes involved in salt tolerance mechanisms that can be used for the improvement of crops. The changes in a plant's gene expression in response to abiotic stresses may depend on factors like soil conditions at the site, seasonality, etc. To date, experiments were performed to study the gene expression of S. europaea only under controlled conditions. Conversely, the present study investigates the transcriptome and physicochemical parameters of S. europaea shoots and roots from two different types of saline ecosystems growing under natural conditions. RESULTS: The level of soil salinity was higher at the naturally saline site than at the anthropogenic saline site. The parameters such as ECe, Na+, Cl-, Ca+, SO42- and HCO3- of the soils and plant organs significantly varied according to sites and seasons. We found that Na+ mainly accumulated in shoots, whereas K+ and Ca2+ levels were higher in roots throughout the growing period. Moreover, changes in S. europaea gene expression were more prominent in seasons, than sites and plant organs. The 30 differentially expressed genes included enzymes for synthesis of S-adenosyl methionine, CP47 of light-harvesting complex II, photosystem I proteins, Hsp70 gene, ATP-dependent Clp proteases, ribulose bisphosphate carboxylase/oxygenase (Rubisco), phenylalanine ammonia-lyase (PAL), cytochrome c oxidase (COX) and ATP synthase. CONCLUSION: The comparisons made based on two seasons, plant organs and two different sites suggest the importance of seasonal variations in gene expression of S. europaea. We identify the genes that may play an important role in acclimation to season-dependent changes of salinity. The genes were involved in processes such as osmotic adjustment, energy metabolism and photosynthesis.


Asunto(s)
Chenopodiaceae/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Chenopodiaceae/fisiología , Ecosistema , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Estaciones del Año , Suelo/química
9.
J Sci Food Agric ; 96(4): 1085-92, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25800973

RESUMEN

BACKGROUND: Salicornia herbacea L. is a halophyte that grows in salt marshes and contains significant amounts of salts and minerals. Because it is known as a folk medication to treat diseases, various processed products such as powder, globular type of powder, laver and extract have been developed. However, it is difficult to process as a drink because of its high salinity. In the present study, glasswort vinegar (GV) containing high amounts of organic acids and minerals was developed via two-step fermentation with unpolished rice substrates and investigated its antioxidant and anti-fatigue activities. RESULTS: GV showed various free radical scavenging effects, reducing power, oxidized-LDL inhibition and superoxide dismutase-like activities. Compared with the control group (orally administered 7 g kg(-1) distilled water), the GV supplementation group showed increased running endurance and had higher glycogen accumulation in liver and muscles of rats exhausted by exercise. Furthermore, the GV-administered group demonstrated significantly elevated lactate and ATP metabolism, promoting enzyme activities such as muscle creatine kinase and lactate dehydrogenase, whereas serum fatigue biomarkers such as ammonia, lactate and inorganic acid were markedly decreased. CONCLUSION: These results indicate that GV can be used as a functional food for the development of a dietary beverage to alleviate fatigue.


Asunto(s)
Chenopodiaceae , Fatiga/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Ácido Acético/farmacología , Ácido Acético/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Tolerancia al Ejercicio/efectos de los fármacos , Masculino , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
10.
Korean J Food Sci Anim Resour ; 35(6): 748-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26877634

RESUMEN

The effects of sea tangle, sea mustard, hijiki, and glasswort were investigated based on the proximate composition, salinity, cooking loss, emulsion stability, pH, color, texture profile analysis, apparent viscosity, and sensory characteristics of reduced-salt (NaCl) meat batter and frankfurters. The moisture content, salinity, lightness of the meat batter and frankfurter, hardness, gumminess, and chewiness of the reduced-salt frankfurters with sea weeds were lower than the control without seaweed (p<0.05). The protein content, springiness, and cohesiveness of the reduced-salt frankfurters were not significantly different among the treatments (p>0.05). The moisture content, salinity, cooking loss, lightness, redness, hardness, gumminess, and chewiness of treatments with sea tangle and with sea mustard were lower than the control (p<0.05). Among the sensory traits, color was highest in the control (p<0.05). The flavor was also highest in the control. The treatments with sea tangle and with sea mustard samples had high tenderness, juiciness, and overall acceptability scores similar to the control (p<0.05). The results of this study show that the combination of low-salt and seaweed in the formulation successfully improved reduced-salt frankfurters, improving sensory characteristics to levels similar to the regular salt control (1.5%).

11.
Korean J Food Sci Anim Resour ; 35(6): 783-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26877638

RESUMEN

This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters.

12.
Meat Sci ; 97(4): 513-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769151

RESUMEN

This study was aimed at evaluation of the effect of glasswort levels (0, 0.5, 1, and 1.5%) on the textural properties of frankfurters formulated with 0.75% NaCl. The addition of glasswort improved protein solubility (P<0.05) and apparent viscosity of frankfurters formulated with 0.75% NaCl, resulting in increased cooking yield and emulsion stability. This phenomenon might be mainly related to salts and dietary fiber within glasswort. In addition, the textural properties of frankfurter prepared with 0.75% NaCl and 1.5% glasswort showed similar properties (P>0.05) compared to those of control (1.5% NaCl). Our result suggests that the use of glasswort can be an effective approach to manufacture reduced-salt meat products. Moreover, the addition of 1.5% glasswort in frankfurters formulated with 0.75% NaCl is the optimum level without adverse effect on the texture.


Asunto(s)
Chenopodiaceae , Proteínas en la Dieta/química , Productos de la Carne/análisis , Preparaciones de Plantas , Cloruro de Sodio Dietético , Animales , Culinaria , Dieta , Fibras de la Dieta , Emulsiones/química , Manipulación de Alimentos/métodos , Humanos , Sales (Química) , Cloruro de Sodio Dietético/administración & dosificación , Solubilidad , Porcinos , Viscosidad
13.
Korean J Food Sci Anim Resour ; 34(3): 378-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26761180

RESUMEN

This study was conducted to determine the effects of red and green glasswort on the physicochemical and textural properties of reduced-salt cooked sausages. The control was formulated with 1.5% NaCl; then, three reduced-salt treatments were prepared, with 0.75% NaCl (RS), 0.75% NaCl+1.0% red glasswort (RSR) and 0.75% NaCl+1.0% green glasswort (RSG), respectively. The addition of glasswort within the added amount of 1% had no influence on the pH value of the reduced-salt cooked sausages, regardless of the glasswort type. In terms of color, RSG treatment conveyed a higher hue angle value than the RSR treatment (p<0.05). Increases in the protein solubility (total and myofibrillar proteins) and apparent viscosity of reduced-salt meat batter that were due to the addition of glasswort were observed; however, there were no differences according to the type of glasswort (p>0.05). Furthermore, the addition of glasswort, regardless of its type, resulted in decreased cooking loss, and increased emulsion stability. As a result, reduced-salt cooked sausages formulated with either red or green glasswort demonstrated similar textural properties to those of the control. In conclusion, the type of glasswort within an added amount of 1% had no influence on the physicochemical and textural properties of reduced-salt cooked sausages, except for the color characteristics. In terms of color alteration by the addition of glasswort, the red glasswort, which in comparison with the green glasswort could minimize the color changes of reduced-salt cooked sausages, might be an effective source for manufacturing meat products.

14.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-643856

RESUMEN

This study was designed to examine the effects of Salicornia herbacea L. (glasswort: GW) on hepatic antioxidative enzyme activities in diabetic rats. Diabetes mellitus was induced in male Sprague-Dawley rats weighing 200-220g by an injection of streptozotocin (STZ) dissolved in a citrate buffer into the tail vein at a dose of 45 mg/kg of body weight. Sprague-Dawley rats were fed an AIN-93 recommended diet and the experimental groups were fed a modified diet containing 10% and 20% of glasswort powder for 4 weeks. The experimental groups were divided into 6 groups which consisted of normal (N)-control group, N-GW 10% and N-GW 20% treated groups, STZ-control, STZ-GW 10% and STZ-GW 20% treated groups. The activities of Xanthine oxidase (XOD), glutathione- S-transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD) and CAT (CAT) were measured in the homogenates of liver. The activity of CAT was lower in the supplementary group with glasswort compare to the STZcontrol group but it was not significantly different. The activity of SOD was not significant in all of experimental groups. The activity of GR was significantly increased in the normal supplementary group with glasswort, and GPX activity was significantly increased in STZ-GW 10% group compare to the STZ-control group. The activity of XOD was significantly decreased in the all of supplementary groups with glasswort. The activity of GST was significantly increased in the N-GW 20% group and it was significantly decreased in the STZ-GW 20% group. These results show that the supplementation of glasswort may have favorable influence on antioxidative status in diabetic rats and it may be useful for the diabetic complications as functional food.


Asunto(s)
Animales , Gatos , Humanos , Masculino , Ratas , Peso Corporal , Chenopodiaceae , Ácido Cítrico , Complicaciones de la Diabetes , Diabetes Mellitus , Dieta , Alimentos Funcionales , Glutatión Peroxidasa , Glutatión Reductasa , Hígado , Ratas Sprague-Dawley , Estreptozocina , Superóxido Dismutasa , Venas , Xantina Oxidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA