Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Reprod Sci ; 234: 106869, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34656888

RESUMEN

For the long-term preservation of the genetic resources of endangered fish species, a combination of germ cell cryopreservation and transplantation can be an effective technique. To optimize these techniques, it is important to identify undifferentiated germ cells possessing transplantability, such as primordial germ cells, type A spermatogonia (ASGs), and oogonia. In this study, a homolog of vasa cDNA in Mekong giant catfish (MGC-vasa) (Pangasianodon gigas), which is an endangered species inhabiting the Mekong river, was cloned and characterized for use as a putative germ cell marker. Results indicate that MGC-Vasa contained all of the consensus motifs, including the arginine-glycine and arginine-glycine-glycine motifs, as well as the nine conserved motifs belonging to the DEAD-box family of proteins. Results from phylogenetic analysis indicated MGC-vasa also grouped with Vasa and was clearly distinguishable from Pl10 in other teleosts. Results from analysis of abundance of mRNA transcripts using reverse transcription-polymerase chain reaction and in situ hybridization performed on immature Mekong giant catfish testis indicated vasa was present specifically in germ cells, with large abundances of the relevant mRNA in spermatogonia and spermatocytes. Sequence similarity and the specific localization of MGC-vasa in these germ cells suggest that the sequence ascertained in this study was a vasa homolog in Mekong giant catfish. Furthermore, vasa-positive cells were detected in prepared smears of testicular cells, indicating that it may be a useful germ cell marker for enzymatically dissociated cells used for transplantation studies.


Asunto(s)
Bagres/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Peces/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Células Germinativas/metabolismo , Secuencia de Aminoácidos , Animales , Biomarcadores , Bagres/genética , Secuencia de Consenso , ARN Helicasas DEAD-box/genética , Especies en Peligro de Extinción , Femenino , Proteínas de Peces/genética , Masculino , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/metabolismo , Distribución Tisular
2.
Food Chem ; 215: 383-90, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27542490

RESUMEN

The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations.


Asunto(s)
Bagres , Gelatina/metabolismo , Péptido Hidrolasas/metabolismo , Hidrolisados de Proteína/metabolismo , Tripsina/metabolismo , Vísceras/enzimología , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antioxidantes/farmacología , Bovinos , Estabilidad de Medicamentos , Depuradores de Radicales Libres , Gelatina/farmacología , Hidrólisis , Hidrolisados de Proteína/farmacología
3.
Food Chem ; 192: 34-42, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26304317

RESUMEN

This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion.


Asunto(s)
Proteínas Bacterianas/química , Bagres/metabolismo , Endopeptidasas/química , Gelatina/química , Hidrolisados de Proteína/química , Animales , Antioxidantes , Digestión
4.
Springerplus ; 3: 677, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25512884

RESUMEN

The dearth of African giant catfish Heterobranchus bidorsalis seeds poses great threat to its aquaculture and biodiversity, hence detailed knowledge and understanding of its embryology is indispensable for its artificial propagation and conservation programmes. Photomicrographs of extruded oocyte through all developmental cell stages of live embryo to larval stage are documented with the aid of a light microscope. The optical transparency of the developing embryo enabled us to describe its deep structures, distinctive features and characterize the stages pictorially. Extruded oocyte had a mean diameter of 1 ± 0.1 mm, ~20% increase when hydrated, and bounded by double thin perivitelline membranes. The first mitotic cleavage occurred at 69 min post-fertilization (pf) resulting in 2, 4 (2 × 2 array of cells), 8 (2 × 4), 16 (4 × 4), 32 (4 × 8), 64 (2 × 4 × 8) blastomeres, then developed to morula, blastula and gastrula stages. Blastula was featured by formation of enveloping layer and yolk syncytial layer. Onset of epiboly at 3 h 57 min depicted the commencement of gastrula while closure of blastopore at 11 h 8 min marked its completion. Neurulation period was distinct from segmentation where organogenesis was fully active. Embryo sudden muscular contraction was noticed at ~17 h pf, increased prior to hatching with caudal locomotion firstly at 42 s interval. Heartbeat of embryo commenced at ~1 h before its unique eclosion at average of 72 beats/min while first larva emerged at 21 h at a controlled temperature of 28.5 ± 0.5°C. Mean total length (TL) of larvae and their pouch thickness were 5 ± 1 mm and 0.05 ± 0.02 mm respectively. 1 -day old larvae revealed 8 distinctive neuromeres and by day 3, epicanthus folds of the eyes were fully uncovered; and thereafter commenced exogenous feeding. At day 4, larvae recorded mean TL of 9 ± 1 mm and 15 caudal fin rays. The fin bifurcation to dorsal and adipose fins was observed at third and half weeks post-hatchability with the dorsal fin length to adipose fin was 1.7:1. This study, for the first time, presents significant morpho-sequential developmental stages of H. bidorsalis and registers its unique form of eclosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA