Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995932

RESUMEN

Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer's feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.


Asunto(s)
Quimiotaxis , Dinoflagelados , Herbivoria , Compuestos de Sulfonio , Compuestos de Sulfonio/metabolismo , Dinoflagelados/fisiología , Acrilatos , Sulfuros/metabolismo , Sulfuros/farmacología , Fitoplancton/fisiología , Animales , Conducta Predatoria , Cadena Alimentaria
2.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831506

RESUMEN

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Asunto(s)
Acrilatos , Shewanella , Shewanella/enzimología , Shewanella/genética , Shewanella/metabolismo , Transporte de Electrón , Acrilatos/metabolismo , Anaerobiosis , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
Sci Total Environ ; 933: 173057, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729372

RESUMEN

Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/µg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.


Asunto(s)
Hongos , Compuestos de Sulfonio , Compuestos de Sulfonio/metabolismo , Hongos/metabolismo , Sedimentos Geológicos/microbiología , Sulfuros/metabolismo , Biodegradación Ambiental , Liasas de Carbono-Azufre/metabolismo
4.
BMC Genomics ; 25(1): 389, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649849

RESUMEN

BACKGROUND: The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS: This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS: Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.


Asunto(s)
Genoma Bacteriano , Familia de Multigenes , Oxidación-Reducción , Filogenia , Rhodobacteraceae , Azufre , Azufre/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/clasificación
5.
J Mol Evol ; 92(2): 121-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489069

RESUMEN

Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.


Asunto(s)
Compuestos de Amonio , Cianobacterias , Ecosistema , Cianobacterias/genética , Metagenoma , Nitratos
6.
mBio ; 15(3): e0290723, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38329332

RESUMEN

Methanethiol (MT) is a sulfur-containing compound produced during dimethylsulfoniopropionate (DMSP) degradation by marine bacteria. The C-S bond of MT can be cleaved by methanethiol oxidases (MTOs) to release a sulfur atom. However, the cleaving process remains unclear, and the species of sulfur product is uncertain. It has long been assumed that MTOs produce hydrogen sulfide (H2S) from MT. Herein, we studied the MTOs in the Rhodobacteraceae family-whose members are important DMSP degraders ubiquitous in marine environments. We identified 57 MTOs from 1,904 Rhodobacteraceae genomes. These MTOs were grouped into two major clusters. Cluster 1 members share three conserved cysteine residues, while cluster 2 members contain one conserved cysteine residue. We examined the products of three representative MTOs both in vitro and in vivo. All of them produced sulfane sulfur other than H2S from MT. Their conserved cysteines are substrate-binding sites in which the MTO-S-S-CH3 complex is formed. This finding clarified the sulfur product of MTOs and enlightened the MTO-catalyzing process. Moreover, this study connected DMSP degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field. IMPORTANCE: This study overthrows a long-time assumption that methanethiol oxidases (MTOs) cleave the C-S bond of methanethiol to produce both H2S and H2O2-the former is a strong reductant and the latter is a strong oxidant. From a chemistry viewpoint, this reaction is difficult to happen. Investigations on three representative MTOs indicated that sulfane sulfur (S0) was the direct product, and no H2O2 was produced. Finally, the products of MTOs were corrected to be S0 and H2O. This finding connected dimethylsulfoniopropionate (DMSP) degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field.


Asunto(s)
Sulfuro de Hidrógeno , Rhodobacteraceae , Compuestos de Sulfhidrilo , Compuestos de Sulfonio , Rhodobacteraceae/metabolismo , Cisteína , Peróxido de Hidrógeno , Azufre/metabolismo , Compuestos de Azufre , Oxidorreductasas/metabolismo
7.
Environ Technol ; : 1-9, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37970872

RESUMEN

Dimethylsulfoniopropionate (DMSP) is a vital sulfur-containing compound with worldwide significance, serving as the primary precursor for dimethyl sulfide (DMS), a volatile sulfur compound that plays a role in atmospheric chemistry and influences the Earth's climate on a global scale. The study investigated the ability of four bacterial strains, namely Acidimangrovimonas sediminis MS2-2 (MS2-2), Hartmannibacter diazotrophicus E18T (E18T), Rhizobium lusitanum 22705 (22705), and Nitrospirillum iridis DSM22198 (DSM22198), to produce and degrade DMSP. These strains were assessed for their DMSP synthesis ability with the mmtN linked to non-ribosomal peptide synthase (NRPS) gene. The results showed that MS2-2, and E18T bacteria, which contained the mmtN but not linked to an NRPS gene, increased DMSP production with increasing salinity. The highest production of DMSP was achieved at 25 PSU when either methionine was added or low nitrogen conditions were present, yielding 1656.03 ± 41.04 and 265.59 ± 9.17 nmol/mg protein, respectively, and subsequently under the conditions of methionine addition or low nitrogen, both strains reached their maximum DMSP production at 25 PSU. Furthermore, the strains MS2-2, E18T, and 22705 with the mmtN gene but not linked to an NRPS gene were found to be involved in DMS production. This research contributes to the understanding of the genes involved in DMSP biosynthesis in bacteria that produce DMSP.

8.
mBio ; : e0146723, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948335

RESUMEN

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions.IMPORTANCECatabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.

9.
Sci Total Environ ; 905: 166957, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37704140

RESUMEN

Fungi are key players in terrestrial organic matter (OM) degradation, but little is known about their role in marine environments. Here we compared the degradation of kelp (Ecklonia radiata) in mesocosms with and without fungicides over 45 days. The aim was to improve our understanding of the vital role of fungal OM degradation and remineralisation and its relevance to marine biogeochemical cycles (e.g., carbon, nitrogen, sulfur, or volatile sulfur). In the presence of fungi, 68 % of the kelp detritus degraded over 45 days, resulting in the production of 0.6 mol of dissolved organic carbon (DOC), 0.16 mol of dissolved inorganic carbon (DIC), 0.23 mol of total alkalinity (TA), and 0.076 mol of CO2, which was subsequently emitted to the atmosphere. Conversely, when fungi were inhibited, the bacterial community diversity was reduced, and only 25 % of the kelp detritus degraded over 45 days. The application of fungicides resulted in the generation of an excess amount of 1.5 mol of DOC, but we observed only 0.02 mol of DIC, and 0.04 mol of TA per one mole of kelp detritus, accompanied by a CO2 emission of 0.081 mol. In contrast, without fungi, remineralisation of kelp detritus to DIC, TA, dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and methanethiol (MeSH) was significantly reduced. Fungal kelp remineralisation led to a remarkable 100,000 % increase in DMSP production. The observed substantial changes in sediment chemistry when fungi are inhibited highlight the important biogeochemical role of fungal remineralisation, which likely plays a crucial role in defining coastal biogeochemical cycling, blue carbon sequestration, and thus climate regulation.


Asunto(s)
Fungicidas Industriales , Kelp , Materia Orgánica Disuelta , Dióxido de Carbono , Azufre/metabolismo , Hongos/metabolismo , Carbono
10.
Environ Sci Pollut Res Int ; 30(45): 101522-101534, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651015

RESUMEN

With the insidiously growing impact of urban development on the environment, the issue of air quality has attracted extensive attention nationally and globally. It is of great significance to study the influence of urbanization on air quality for the rational development of cities. MODIS-MAIAC (Moderate Resolution Imaging Spectroradiometer-Multi-Angle Implementation of Atmospheric Correction) Aerosol optical depth (AOD) product, DMSP/OLS (Defense Meteorological Satellite Program/Operational Linescan System) and NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) night-light were used to explore the spatiotemporal variation and correlation between AOD and urbanization development before and after the promulgation of environmental governance policies in Jinan City from 2009 to 2018. Results show that (1) the spatial distribution of AOD in Jinan had the characteristics of high in the north and low in the south, high in the west and low in the east, and low in some parts of the central region; there was a significant seasonal variation in time, with the highest AOD in summer and the lowest in winter. During 2009-2013, the annual average variation of AOD increased by 20.6%, while during 2014-2018, it decreased by 35.3%; (2) The distribution of night-light in Jinan City has progressively expanded, mirroring the city's ongoing development. The spatial distribution of aerosols in urban areas was relatively low compared to the surrounding areas of the city. (3) From 2009 to 2013, there existed a significant positive correlation between the spatial and temporal distribution of AOD and night-light. However, from 2014 to 2018, with the implementation of environmental governance policies, this relationship shifted to a significant negative correlation between the spatial and temporal distribution of AOD and night-light. Through an analysis of the correlation between urban development and aerosol depth in Jinan City over the past decade, it can be concluded that urban development does not inevitably result in elevated AOD levels. Notably, the Jinan government has achieved remarkable results in controlling the atmospheric environment, as evidenced by recent years' improvements.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Ciudades , Urbanización , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , Política Ambiental , Aerosoles/análisis , China
11.
Trends Microbiol ; 31(10): 992-994, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37481345

RESUMEN

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound with key ecological roles in marine environments. This paper offers a brief insight into the mechanisms, environmental diversity, and importance of DMSP-mediated marine microbial interactions, including algae-microzooplankton interactions, bacteria-microzooplankton interactions, and algae-bacteria interactions. We also highlight current challenges that warrant further investigation.


Asunto(s)
Compuestos de Sulfonio , Interacciones Microbianas
12.
Sensors (Basel) ; 23(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37430889

RESUMEN

Impervious surfaces affect the ecosystem function of watersheds. Therefore, the impervious surface area percentage (ISA%) in watersheds has been regarded as an important indicator for assessing the health status of watersheds. However, accurate and frequent estimation of ISA% from satellite data remains a challenge, especially at large scales (national, regional, or global). In this study, we first developed a method to estimate ISA% by combining daytime and nighttime satellite data. We then used the developed method to generate an annual ISA% distribution map from 2003 to 2021 for Indonesia. Third, we used these ISA% distribution maps to assess the health status of Indonesian watersheds according to Schueler's criteria. Accuracy assessment results show that the developed method performed well from low ISA% (rural) to high ISA% (urban) values, with a root mean square difference value of 0.52 km2, a mean absolute percentage difference value of 16.2%, and a bias of -0.08 km2. In addition, since the developed method uses only satellite data as input, it can be easily implemented in other regions with some modifications according to differences in light use efficiency and economic development in each region. We also found that 88% of Indonesian watersheds remain without impact in 2021, indicating that the health status of Indonesian watersheds is not a serious problem. Nevertheless, Indonesia's total ISA increased significantly from 3687.4 km2 in 2003 to 10,505.5 km2 in 2021, and most of the increased ISA was in rural areas. These results indicate that negative trends in health status in Indonesian watersheds may emerge in the future without proper watershed management.


Asunto(s)
Ecosistema , Estado de Salud , Indonesia , Evaluación de Resultado en la Atención de Salud
13.
Appl Environ Microbiol ; 89(7): e0025123, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306587

RESUMEN

Dimethylsulfoniopropionate (DMSP) and related organic sulfur compounds play key roles in global sulfur cycling. Bacteria have been found to be important DMSP producers in seawater and surface sediments of the aphotic Mariana Trench (MT). However, detailed bacterial DMSP cycling in the Mariana Trench subseafloor remains largely unknown. Here, the bacterial DMSP-cycling potential in a Mariana Trench sediment core (7.5 m in length) obtained at a 10,816-m water depth was investigated using culture-dependent and -independent methods. The DMSP content fluctuated along the sediment depth and reached the highest concentration at 15 to 18 cm below the seafloor (cmbsf). dsyB was the dominant known DMSP synthetic gene, existing in 0.36 to 1.19% of the bacteria, and was identified in the metagenome-assembled genomes (MAGs) of previously unknown bacterial DMSP synthetic groups such as Acidimicrobiia, Phycisphaerae, and Hydrogenedentia. dddP, dmdA, and dddX were the major DMSP catabolic genes. The DMSP catabolic activities of DddP and DddX retrieved from Anaerolineales MAGs were confirmed by heterologous expression, indicating that such anaerobic bacteria might participate in DMSP catabolism. Moreover, genes involved in methanethiol (MeSH) production from methylmercaptopropionate (MMPA) and dimethyl sulfide (DMS), MeSH oxidation, and DMS production were highly abundant, suggesting active conversions between different organic sulfur compounds. Finally, most culturable DMSP synthetic and catabolic isolates possessed no known DMSP synthetic and catabolic genes, and actinomycetes could be important groups involved in both DMSP synthesis and catabolism in Mariana Trench sediment. This study extends the current understanding of DMSP cycling in Mariana Trench sediment and highlights the need to uncover novel DMSP metabolic genes/pathways in extreme environments. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is an abundant organosulfur molecule in the ocean and is the precursor for the climate-active volatile gas dimethyl sulfide. Previous studies focused mainly on bacterial DMSP cycling in seawater, coastal sediment, and surface trench sediment samples, but DMSP metabolism in the Mariana Trench (MT) subseafloor sediments remains unknown. Here, we describe the DMSP content and metabolic bacterial groups in the subseafloor of the MT sediment. We found that the tendency for vertical variation of the DMSP content in the MT was distinct from that of the continent shelf sediment. Although dsyB and dddP were the dominant DMSP synthetic and catabolic genes in the MT sediment, respectively, both metagenomic and culture methods revealed multiple previously unknown DMSP metabolic bacterial groups, especially anaerobic bacteria and actinomycetes. The active conversion of DMSP, DMS, and methanethiol may also occur in the MT sediments. These results provide novel insights for understanding DMSP cycling in the MT.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Agua de Mar/microbiología , Bacterias , Sulfuros/metabolismo , Compuestos de Sulfonio/metabolismo
14.
Environ Microbiome ; 18(1): 47, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264467

RESUMEN

BACKGROUND: Microbes have fundamental roles underpinning the functioning of our planet, they are involved in global carbon and nutrient cycling, and support the existence of multicellular life. The mangrove ecosystem is nutrient limited and if not for microbial cycling of nutrients, life in this harsh environment would likely not exist. The mangroves of Southeast Asia are the oldest and most biodiverse on the planet, and serve vital roles helping to prevent shoreline erosion, act as nursery grounds for many marine species and sequester carbon. Despite these recognised benefits and the importance of microbes in these ecosystems, studies examining the mangrove microbiome in Southeast Asia are scarce.cxs RESULTS: Here we examine the microbiome of Avicenia alba and Sonneratia alba and identify a core microbiome of 81 taxa. A further eight taxa (Pleurocapsa, Tunicatimonas, Halomonas, Marinomonas, Rubrivirga, Altererythrobacte, Lewinella, and Erythrobacter) were found to be significantly enriched in mangrove tree compartments suggesting key roles in this microbiome. The majority of those identified are involved in nutrient cycling or have roles in the production of compounds that promote host survival. CONCLUSION: The identification of a core microbiome furthers our understanding of mangrove microbial biodiversity, particularly in Southeast Asia where studies such as this are rare. The identification of significantly different microbial communities between sampling sites suggests environmental filtering is occurring, with hosts selecting for a microbial consortia most suitable for survival in their immediate environment. As climate change advances, many of these microbial communities are predicted to change, however, without knowing what is currently there, it is impossible to determine the magnitude of any deviations. This work provides an important baseline against which change in microbial community can be measured.

15.
Sci Total Environ ; 892: 164258, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209734

RESUMEN

Coral bleaching and coral reef degradation have been severely increased due to anthropogenic impacts, especially global warming. Studies have indicated the key role of host-microbiome symbiotic relationships for the coral holobiont health and development, although not all of the mechanisms of interaction have been fully explored. Here, we explore bacterial and metabolic shifts within coral holobionts under thermal stress, and its correlation with bleaching. Our results showed obvious signs of coral bleaching after 13 days of heating treatment, and a more-complex co-occurrence network was observed in the coral-associated bacterial community of the heating group. The bacterial community and metabolites changed significantly under thermal stress, and genera Flavobacterium, Shewanella and Psychrobacter increased from <0.1 % to 43.58 %, 6.95 % and 6.35 %, respectively. Bacteria potentially associated with stress tolerance, biofilm formation and mobile elements decreased from 80.93 %, 62.15 % and 49.27 % to 56.28 %, 28.41 % and 18.76 %, respectively. The differentially expressed metabolites of corals after heating treatment, such as Cer(d18:0/17:0), 1-Methyladenosine, Trp-P-1 and Marasmal, were associated with cell cycle regulation and antioxidant properties. Our results can contribute to our current understanding on the correlations between coral-symbiotic bacteria, metabolites and the coral physiological response to thermal stress. These new insights into the metabolomics of heat-stressed coral holobionts may expand our knowledge on the mechanisms underlying bleaching.


Asunto(s)
Antozoos , Microbiota , Animales , Blanqueamiento de los Corales , Arrecifes de Coral , Antozoos/fisiología , Respuesta al Choque Térmico , Bacterias , Simbiosis
16.
Front Microbiol ; 14: 1135083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032870

RESUMEN

The microbial cycling of dimethylsulfoniopropionate (DMSP) and the resulting gaseous catabolites dimethylsulfide (DMS) or methylmercaptan (MeSH) play key roles in the global sulfur cycle and potentially climate regulation. As the ocean-atmosphere boundary, the sea surface microlayer (SML) is important for the generation and emission of DMS and MeSH. However, understanding of the microbial DMSP metabolism remains limited in the SML. Here, we studied the spatiotemporal differences for DMS/DMSP, bacterial community structure and the key bacterial DMSP metabolic genes between SML and subsurface seawater (SSW) samples in the eastern China marginal seas (the East China Sea and Yellow Sea). In general, DMSPd and DMSPt concentrations, and the abundance of total, free-living and particle-associated bacteria were higher in SML than that in SSW. DMSP synthesis (~7.81-fold for dsyB, ~2.93-fold for mmtN) and degradation genes (~5.38-fold for dmdA, ~6.27-fold for dddP) detected in SML were more abundant compared with SSW samples. Free-living bacteria were the main DMSP producers and consumers in eastern Chinese marginal sea. Regionally, the bacterial community structure was distinct between the East China Sea and the Yellow Sea. The abundance of DMSP metabolic genes (dsyB, dmdA, and dddP) and genera in the East China Sea were higher than those of the Yellow Sea. Seasonally, DMSP/DMS level and DMSP metabolic genes and bacteria were more abundant in SML of the East China Sea in summer than in spring. Different from those in spring, Ruegeria was the dominant DMSP metabolic bacteria. In conclusion, the DMSP synthesis and degradation showed significant spatiotemporal differences in the SML of the eastern China marginal seas, and were consistently more active in the SML than in the SSW.

17.
Mar Genomics ; 68: 101016, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36894215

RESUMEN

Members of the genus Pseudomonas have been frequently isolated from the marine environment, indicating their ecological role in native habitats. One bacterial strain, Pseudomonas sp. BSw22131, was isolated from seawater in Kongsfjorden, Svalbard. The bacterium can grow with algae-derived dimethylsulfoniopropionate (DMSP) as the sole carbon source. Here, we sequenced the complete genome of strain BSw22131, which contained a single circular chromosome of 5,739,290 (G + C content of 58.23 mol%) without any plasmids. A total of 5362 protein-coding genes, 65 tRNA genes, and 16 rRNA genes were obtained. Genome sequence analysis revealed that strain BSw22131 was not only a potential novel species of the genus Pseudomonas but also different from Pseudomonas sp. DMSP-1 that was isolated from the same habitat and also utilized DMSP as the sole carbon source for growth. The results can be helpful for understanding the catabolism of the genus Pseudomonas in sulfur cycling in the Arctic fjord ecosystem.


Asunto(s)
Ecosistema , Compuestos de Sulfonio , Bacterias/genética , Agua de Mar/microbiología , Compuestos de Sulfonio/metabolismo , Filogenia
18.
Sci Total Environ ; 879: 163020, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36965732

RESUMEN

In two Icelandic Sea spring blooms (May 2018 and 2019) in the North Atlantic Ocean (62.9-68.0°N, 9.0-28.0°W), chlorophyll-a and dimethylsulfoniopropionate (DMSP) concentrations and DMSP lyase activity (the DMSP-to-dimethyl sulfide (DMS) conversion efficiency) were measured at 67 stations, and the hourly atmospheric DMS mixing ratios were concurrently measured only in May 2019 at Storhofdi on Heimaey Island, located south of Iceland (63.4°N, 20.3°W). The ocean parameters for biology (i.e., chlorophyll-a, DMSP, and DMSP lyase activity) were broadly associated in distribution; however, the statistical significance of the association differed among four ocean domains and also between 2018 and 2019. Specifically, the widespread dominance of Phaeocystis, coccolithophores, and dinoflagellates (all rich in DMSP and high in DMSP lyase activity) across the study area is a compelling indication that variations in DMSP-rich phytoplankton were likely a main cause of the variations in statistical significance. For all the ocean domains defined here, we found that the DMS production capacity (calculated using the exposures of air masses to ocean biology prior to their arrivals at Heimaey and the atmospheric DMS mixing ratios of those air masses at Heimaey) was surprisingly consistent with in situ ocean S data (i.e., DMSP and DMSP lyase activity). Our study shows that the proposed computational approach enabled the detection of changes in DMS production and emission in association with changes in ocean primary producers.


Asunto(s)
Fitoplancton , Compuestos de Azufre , Océano Atlántico , Clorofila , Clorofila A , Islandia , Agua de Mar , Sulfuros/análisis
19.
Environ Sci Pollut Res Int ; 30(18): 52266-52287, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36826762

RESUMEN

This study explores the spatial and temporal evolution characteristics of transportation carbon emissions from multiple scales. Based on the integrated DMSP/OLS-NPP/VIIRS nighttime light data, a transportation carbon emission estimation model was constructed, and the spatial and temporal evolution characteristics of transportation carbon emissions in 30 provinces and some counties in China from 2000 to 2019 were analyzed. The main findings are as follows: (1) The goodness-of-fit of the estimation model improved from 51.2 to 87.15% by introducing the GDP variables. (2) At the provincial scale, the provinces with high carbon emissions from transportation were mainly distributed in the eastern region, with the highest value increasing from 19,171.6 million tons in 2000 to 71,545.98 million tons in 2019. The spatial distribution has a significant and positive spatial spillover effect, and the H-H aggregation was mainly distributed in the east-central region, showing a trend of expansion from the coast to the inland. Trend analysis showed that Shandong, Guangdong, Shanghai, and Jiangsu were areas with a rapid growth of high carbon emissions. (3) The county scale displayed a northeast-southwest evolutionary pattern, with the center of gravity in Henan. The spatial distribution showed a significant spatial agglomeration phenomenon. Trend analysis indicated that the transportation carbon emissions in 184 counties need to be controlled urgently, which was the focus of carbon emission reduction. This paper theoretically enriches the measurement method of transportation carbon emissions and overcomes the problem of insufficient spatial information of statistical data. In practice, it provides a scientific basis for accurate emission reduction and low-carbon development of transportation.


Asunto(s)
Carbono , Emisiones de Vehículos , Emisiones de Vehículos/análisis , China , Carbono/análisis , Dióxido de Carbono/análisis , Transportes , Desarrollo Económico
20.
Mar Pollut Bull ; 189: 114738, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36842280

RESUMEN

Dimethylsulphide is a dominant biogenic sulphur anti-greenhouse gas produced by marine phytoplankton. A non-axenic culture of Skeletonema costatum was studied to comprehend the effects of different growth stages and light stress on DMSP/DMS production. The intracellular DMSP concentration increased during late exponential to mid-stationary phase and attained a maximum (0.59 pg S cell-1) during the stationary phase, indicating more contribution from actively dividing smaller cells. Likewise, exposure to first light after a 12-hour dark phase caused stress, invariably leading to elevated levels of DMS (~9 fold). These observations were upheld by additional laboratory and field experiments, and a field time-series observation, which recorded higher DMS concentrations during exposure to first light after a dark cycle and during early mornings, respectively. While our study depicts the variable DMSP and DMS concentrations during different growth stages of S. costatum, it gives new information on the effect of light stress on DMS production.


Asunto(s)
Diatomeas , Fitoplancton , Azufre/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA