Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Appl Spectrosc ; : 37028241267900, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094003

RESUMEN

The conditions for the smart colorimetric determination of cetylpyridinium chloride and sodium dodecyl sulfate by reaction with Coomassie brilliant blue G (CBBG) have been proposed. The nature of the absorption and fluorescence spectra of aqueous solutions of CBBG as a function of acidity has been investigated. A variety of reagent forms and associations with ionic surfactants have been demonstrated. The composition of the associates formed in the CBBG-cationic surfactant system has been established. The increase in the analytical signal of the cationic surfactant and the stabilization of the colloid-chemical state of the system during reactions in the organized medium of the nonionic surfactant Triton X-100 has been demonstrated. These effects are realized through association in premicellar solutions and as a result of the solubilization of components in Triton X-100 micellar solutions. The addition of long-chain cationic surfactants to the reagent occurs with the replacement of the heteroatom proton. The absorption of CBBG-cationic surfactant associates solutions increases with the length of the cationic surfactant hydrocarbon chain. Ethanol additives decrease the aggregation of CBBG. The technique of cationic surfactant determination has been tested in the analysis of the pharmaceutical. The results show that the simplicity of analytical signal registration with satisfactory correctness and acceptably high sensitivity of determination is an advantage of the developed technique.

2.
Methods Mol Biol ; 2851: 193-199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210183

RESUMEN

Some gram-negative bacteria such as Escherichia coli and Salmonella spp. among intestinal bacteria might induce inflammation of human intestines. However, lactic acid bacteria (LAB) display anti-inflammatory activity, which improves the intestinal environment. Particularly, the cell surface protein on Pediococcus pentosaceus exhibits high LPS elimination activity, which is expected to provide anti-inflammatory activity in the intestines. This chapter describes that surface proteins are separable using Blue-Native PAGE, which relies upon the theory that protein binds with Coomassie brilliant blue to produce a negative charge for easy separation.


Asunto(s)
Lactobacillales , Lipopolisacáridos , Colorantes de Rosanilina , Lipopolisacáridos/metabolismo , Lactobacillales/metabolismo , Colorantes de Rosanilina/química , Colorantes de Rosanilina/metabolismo , Humanos , Electroforesis en Gel de Poliacrilamida Nativa/métodos , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo
3.
Anal Biochem ; 691: 115553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697592

RESUMEN

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Asunto(s)
Ácido Acético , Electroforesis en Gel de Poliacrilamida , Metanol , Microondas , Proteínas , Electroforesis en Gel de Poliacrilamida/métodos , Metanol/química , Proteínas/análisis , Ácido Acético/química , Coloración y Etiquetado/métodos , Colorantes de Rosanilina/química
4.
Food Chem (Oxf) ; 8: 100201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38577346

RESUMEN

The objective of this study was to develop a DNA-based method for the identification and tracking of edible oils, which is important for health management. Three different DNA extraction methods (CTAB, MBST kit, and manual hexane-based method) were used to obtain high-purity DNA from crude and refined soybean, maize, and canola oils. PCR was then conducted using specific primers to identify the presence of genes related to each oil type and to assess transgenicity. The results showed that DNA was present in crude and refined oils, but in very low amounts. However, using method 3 for DNA extraction provided sufficient quantity and quality of DNA for successful PCR amplification. The study concluded that the main challenge in DNA extraction from oils is the presence of PCR inhibitors, which can be overcome using the manual hexane-based method. Also, the examination of protein presence in the oils using SDS-PAGE did not indicate any protein bands.

5.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453761

RESUMEN

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Asunto(s)
Colorantes de Rosanilina , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Colorantes de Rosanilina/química , Óxido de Zinc/química , Contaminantes Químicos del Agua/química , Catálisis , Nanopartículas/química , Extractos Vegetales/química , Colorantes/química , Flores/química , Compuestos Férricos/química
6.
Methods Mol Biol ; 2791: 113-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532098

RESUMEN

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Asunto(s)
Fagopyrum , Proteoma , Proteoma/análisis , Proteómica , Focalización Isoeléctrica/métodos , Hojas de la Planta/química , Flores , Electroforesis en Gel Bidimensional/métodos , Geles , Concentración de Iones de Hidrógeno
7.
Heliyon ; 10(4): e25285, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370249

RESUMEN

In this study, rifaximin with copper (Cu) and copper oxide (CuO) nanoparticles (NPs) were synthesised. The resultant CuO nanoparticles were used to degrade Rhodamine B (RhB) and Coomassie Brilliant Blue (G250). Rifaximin copper and copper oxide nanoparticles were characterised using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and gas chromatography-electrochemical mass spectrometry (GC-EI-MS). An FT-IR study confirmed the formation of Cu in the 562 cm-1 peak range. Rifaximin Cu and CuO Nanoparticles displayed UV absorption peaks at 253 nm and 230 nm, respectively. Coomassie Brilliant Blue G250 was completely decolourised in Cu nanoparticles at 100 %, and Rhodamine B was also decolourised in Rifaximin CuO nanoparticles at 73 %, although Coomassie Brilliant Blue G250 Rifaximin Cu nanoparticles absorbed a high percentage of dye decolorization. The aerobic oxidation of isopropanol conversion was confirmed by GC-MS analysis. Retention time of 27.35 and 30.32 was confirmed using Cu and CuO nanoparticles as the final products of 2-propanone. It is used in the textile and pharmaceutical industries for aerobic alcohol oxidation. Rifaximin CuO nanoparticles highly active in aerobic oxidation. The novelty of this study is that, for the first time, rifaximin was used for the synthesis of copper and copper oxide nanoparticles, and it successfully achieved decolorization and aerobic oxidation.

8.
Food Chem X ; 20: 100934, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144752

RESUMEN

This present study investigated the effect of cold atmospheric plasma (CAP) pre-treatment on the quality of ready-to-eat drunken red shrimp (Solenocera crassicornis) during chilled storage. The shrimp were pre-treated with the CAP at 40 kV and 36 kH for 100 s in a plasma generating equipment before the drunken treatment and compared with an untreated control sample. The results showed that the CAP pre-treatment significantly inhibited the total viable count (TVC) values, total volatile basic nitrogen (TVB-N) content, and polyphenol oxidase (PPO) activity of the drunken shrimp compared to the control treatment. Furthermore, the CAP pre-treatment also significantly maintained the myofibrillar protein (MP) content, texture properties, and a more stable histological structure of muscle fibers compared to the control. High-throughput sequencing results confirmed that the CAP pre-treatment significantly reduced the diversity and abundance of several bacteria in the shrimp. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis detected that the CAP pre-treatment effectively maintained the stability of volatile organic compounds (VOCs). These findings provide valuable theoretical support for the processing and storage of drunken shrimp.

9.
Front Chem ; 11: 1260533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789965

RESUMEN

Four distinct fluorescence complexes, the fluorescent complex-1 (FC-1), fluorescent complex-2 (FC-2), fluorescent complex third (FC-3) and fluorescent complex fourth (FC-4), were created using isorhamnetin and Coomassie brilliant blue G250 as raw materials. The issue of isorhamnetin's low solubility has been resolved, and isorhamnetin-coomassie brilliant blue G250 now has better biocompatibility. Four different forms of fluorescence compounds' ultraviolet absorption spectra were identified. It was discovered that FC-2, FC-3, and FC-4, respectively, had double peaks at 483-620 nm. FC-4 had the highest ultraviolet absorption intensity, whereas FC-1 exhibited the most consistent and longest wavelength of ultraviolet absorption. Transmission electron microscopy revealed that the acrylic resin evenly disseminated the Coomassie brilliant blue G250-isorhamnetin complex in an amorphous flocculent form. Human prostate cancer cells (PC3) and human cervical cancer cells (HeLa) were investigated in the (Cell Counting Kit-8) CCK8 experiment under 10 different concentration circumstances, and the proliferation impact was 64.30% and 68.06%, respectively. Shown the complex's strong anti-tumor properties and minimal cytotoxicity. Through in vitro imaging of tumor cells, it was found that FC-1's fluorescent complex has high selectivity and can accurately infiltrate tumor cells, proving that it is biocompatible. The design not only addresses the issue of isorhamnein-Coomassie Bright Blue G250's bioavailability, but it also has an effective visual fluorescence targeting effect.

10.
Gels ; 9(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36975700

RESUMEN

Marine gel particles (MGP) are amorphous hydrogel exudates from bacteria and microalgae that are ubiquitous in the oceans, but their biochemical composition and function are poorly understood. While dynamic ecological interactions between marine microorganisms and MGPs may result in the secretion and mixing of bacterial extracellular polymeric substances (EPS) such as nucleic acids, compositional studies currently are limited to the identification of acidic polysaccharides and proteins in transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP). Previous studies targeted MGPs isolated by filtration. We developed a new way of isolating MGPs from seawater in liquid suspension and applied it to identify extracellular DNA (eDNA) in North Sea surface seawater. Seawater was filtered onto polycarbonate (PC) filters with gentle vacuum filtration, and then the filtered particles were gently resuspended in a smaller volume of sterile seawater. The resulting MGPs ranged in size from 0.4 to 100 µm in diameter. eDNA was detected by fluorescent microscopy using YOYO-1 (for eDNA), with Nile red (targeting cell membranes) as a counterstain. TOTO-3 was also used to stain eDNA, with ConA to localise glycoproteins and SYTO-9 for the live/dead staining of cells. Confocal laser scanning microscopy (CLSM) revealed the presence of proteins and polysaccharides. We found eDNA to be universally associated with MGPs. To further elucidate the role of eDNA, we established a model experimental MGP system using bacterial EPS from Pseudoalteromonas atlantica that also contained eDNA. Our results clearly demonstrate the occurrence of eDNA in MGPs, and should aid furthering our understanding of the micro-scale dynamics and fate of MGPs that underly the large-scale processes of carbon cycling and sedimentation in the ocean.

11.
J Biochem ; 174(1): 47-58, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36805939

RESUMEN

The lipopolysaccharide (LPS)-triggered horseshoe crab coagulation cascade is composed of three protease zymogens, prochelicerase C (proC), prochelicerase B (proB) and the proclotting enzyme (proCE). In this study, we found that Ca 2+ ions increase the production of the clotting enzyme as a result of a cascade reaction reconstituted by recombinant proteins of wild-type (WT) proC, WT proB and WT proCE. We divided the cascade into three stages: autocatalytic activation of WT proC on the surface of LPS into WT α-chelicerase C (Stage 1); activation of WT proB on the surface of LPS into WT chelicerase B by WT α-chelicerase C (Stage 2) and activation of WT proce into WT CE by chelicerase B (Stage 3). Ca2+ ions enhanced the proteolytic activation in Stage 2, but not those in Stages 1 and 3. Moreover, we performed isothermal titration calorimetry to clarify the interaction of LPS or the recombinant zymogens with Ca2+ ions. LPS interacted with Ca2+ ions at an association constant of Ka = 4.7 × 104 M-1, but not with any of the recombinant zymogens. We concluded that LPS bound with Ca2+ ions facilitates the chain reaction of the cascade as a more efficient scaffold than LPS itself.


Asunto(s)
Cangrejos Herradura , Lipopolisacáridos , Animales , Lipopolisacáridos/metabolismo , Calcio/metabolismo , Coagulación Sanguínea , Precursores Enzimáticos/metabolismo
12.
Food Chem ; 400: 134012, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36055143

RESUMEN

Exploring a novel strategy for strengthening the catalytic activity of enzyme facilitates the development of a sensitive enzyme-linked immunosorbent assay (ELISA). Herein, a chemical staining (CS) strategy was firstly discovered to possess the ability to directly improve the catalytic activity of horseradish peroxidase. Based on this discovery, coomassie brilliant blue was introduced into ELISA to establish a CS enhanced ELISA (CS-ELISA) to detect clenbuterol (CL) by simply staining monoclonal antibodies. Satisfactorily, the most important analytical parameters of CS-ELISA, including sensitivity (0.074 ng mL-1) and linear range (0.2-2 ng mL-1) were all improving 2-folds compared with conventional ELISA. Moreover, the CS-ELISA shows good applicability in the detection of CL in pork tenderloin samples. The proposed CS-ELISA shows various advantages, such as cost-effective, easily accessible, enhanced catalytic activity of enzyme, higher sensitivity, and broader linear range, providing a new insight into enhanced ELISA for food safety.


Asunto(s)
Clenbuterol , Anticuerpos Monoclonales , Clenbuterol/análisis , Ensayo de Inmunoadsorción Enzimática , Peroxidasa de Rábano Silvestre , Coloración y Etiquetado
13.
Anal Sci ; 39(3): 267-274, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36451064

RESUMEN

The Amyloid fibrils of proteins are involved in various diseases, such as Alzheimer's disease. To suppress such amyloid fibrils, it is essential to develop methods to elucidate their enzymatic degradation process. Lysozyme in egg white has been well studied as a model protein of amyloid fibrils. Here, we establish a method for separating and evaluating both lysozyme fibrils and their enzymatic degradation products by combining non-denaturing gel electrophoresis and anionic dye staining with Congo red and two Coomassie brilliant blue (CBB) dyes. By combining non-denaturing gel electrophoresis and amyloid-specific Congo red staining, the separation site of lysozyme fibril was stained explicitly by Congo red and identified on the gel, and the amount of lysozyme fibrils decreased following the enzymatic degradation of lysozyme fibrils. Both lysozyme fibrils and their enzymatic degradation products were separated and examined by combining non-denaturing gel electrophoresis and double staining with CBB G-250 and R-250 dyes. Protein stained with negatively charged colloidal CBB G-250 could migrate to the anode side of electrophoresis. Following gel electrophoresis, noncolloidal CBB R-250 was used to detect lysozyme fibrils and the enzymatic degradation products. This method can be applied to investigate the enzymatic degradation process of amyloid fibrils.


Asunto(s)
Colorantes , Muramidasa , Rojo Congo , Electroforesis en Gel de Poliacrilamida , Coloración y Etiquetado , Proteínas/análisis
14.
J Biochem ; 173(2): 65-72, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36352502

RESUMEN

Polyacrylamide gel electrophoresis (PAGE) with sodium dodecyl sulphate (SDS) and Coomassie brilliant blue (CBB) staining is widely used in protein research and requires time for electrophoresis, staining and destaining. Because the protein bands electrophoresed in the gel are invisible in most cases, the results cannot be observed until the whole process is complete. In this study, shadowgraph was applied to detect biomolecules such as proteins during electrophoresis. A simple optical system and camera-enabled real-time monitoring of migration and separation of individual protein bands in polyacrylamide gels without staining. The visibility was high enough that it was possible to visualize substances other than proteins, such as DNA. This method provides protein profiles instantly in the early stage of electrophoresis. The elimination of the staining and destaining steps will help save researchers' time. The method is also environmentally friendly and will help reduce the generation of waste solutions containing synthetic dyes.


Asunto(s)
Colorantes , Proteínas , Colorantes/análisis , Colorantes/química , Coloración y Etiquetado , Electroforesis en Gel de Poliacrilamida , Proteínas/química , Dodecil Sulfato de Sodio
15.
Food Chem ; 408: 135208, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525730

RESUMEN

The effects of protein oxidation on the emulsion gel properties of myofibrillar protein (MP) in the presence of tetrasodium pyrophosphate (TSPP) and soybean protein isolate (SPI) were investigated from the perspective of interfacial protein interactions. The results showed that the emulsifying activity and emulsion stability of MP increased by 35.2 %-181.6 % with elevated H2O2 concentrations (1-20 mM), while the gel strength and water holding capacity of MP emulsions first increased to a maximum at 5 mM H2O2 and then decreased. TSPP and SPI further reinforced the effects caused by oxidation. The emulsifying properties of MP and its emulsion gel properties were closely related to surface hydrophobicity/hydrogen bonds/hydrophobic interactions and disulfide bonds among interfacial proteins, respectively. However, these correlations became difficult to define when TSPP and SPI were introduced. The study provides a theoretical basis for the strategy development to reduce protein oxidation damage on meat product quality.


Asunto(s)
Peróxido de Hidrógeno , Proteínas de Soja , Proteínas de Soja/química , Emulsiones , Estrés Oxidativo
16.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36287928

RESUMEN

Viperidae snakes are the most important agents of snakebites in Brazil. The protein composition of snake venoms has been frequently analyzed by means of electrophoretic techniques, but the interaction of proteins in venoms has barely been addressed. An electrophoretic technique that has gained prominence to study this type of interaction is blue native polyacrylamide gel electrophoresis (BN-PAGE), which allows for the high-resolution separation of proteins in their native form. These protein complexes can be further discriminated by a second-dimension gel electrophoresis (SDS-PAGE) from lanes cut from BN-PAGE. Once there is no study on the use of bidimensional BN/SDS-PAGE with snake venoms, this study initially standardized the BN/SDS-PAGE technique in order to evaluate protein interactions in Bothrops atrox, Bothrops erythromelas, and Bothrops jararaca snake venoms. Results of BN/SDS-PAGE showed that native protein complexes were present, and that snake venom metalloproteinases and venom serine proteinases maintained their enzymatic activity after BN/SDS-PAGE. C-type lectin-like proteins were identified by Western blotting. Therefore, bidimensional BN/SDS-PAGE proved to be an easy, practical, and efficient method for separating functional venom proteins according to their assemblage in complexes, as well as to analyze their biological activities in further details.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Bothrops/metabolismo , Brasil , Electroforesis en Gel Bidimensional , Venenos de Crotálidos/metabolismo , Venenos de Serpiente/metabolismo , Electroforesis en Gel de Poliacrilamida , Metaloproteasas/metabolismo , Serina Proteasas/metabolismo , Lectinas Tipo C/metabolismo
17.
Int J Biol Macromol ; 219: 353-365, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35926676

RESUMEN

Herein, we report the synthesis and characterization of gelatin/κ-carrageenan crosslinked polyacrylic acid hydrogel (GT-CAG-cl-polyAA) and graphene oxide incorporated hydrogel nanocomposite (GOHNC) through a free radical crosslinking pathway. Under optimized reaction conditions, GT-CAG-cl-polyAA displayed 486 % maximum swelling percentage. TEM image depicted wrinkled silk veil wave-type surface morphology of graphene oxide (GO), whereas, the SEM analysis indicated the porous nature of the GT-CAG-cl-polyAA and GOHNC capable of accumulating a large number of water/dye molecules. GT-CAG-cl-polyAA exhibited 96.11 % and 82.16 % dye removal potential for the adsorption of methylene blue (MB) and coomassie brilliant blue (CB), respectively under optimized conditions. GOHNC enhanced the % dye removal efficiency (98.39 % for MB and 94.50 % for CB). The maximum adsorption capacity of GOHNC for the removal of CB and MB was 312.7 mg/g and 94.9 mg/g, respectively. The adsorption of CB and MB exhibited best fitting with Flory-Huggins adsorption isotherms data. The negative values of ΔG° and positive values of ΔS° which were obtained from the adsorption isotherm plot suggested the thermodynamic feasibility of the adsorption. Also, the samples were reusable for up to five consecutive cycles without any degradation and hence suggested a considerable pathway for the separation of textile dyes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carragenina , Colorantes , Gelatina , Grafito , Hidrogeles , Cinética , Azul de Metileno , Colorantes de Rosanilina , Seda , Agua
18.
Anal Biochem ; 655: 114839, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987416

RESUMEN

The color shift caused by the interaction between proteins and Coomassie Brilliant Blue in the Bradford assay can be recorded with a smartphone camera. Color data can then be extracted from pictures and processed as analytical signals. Here, I present a simple procedure to accurately measure protein levels using color data from pictures of microplates. Plotting the ratio of blue to green intensity (RGB scale) as a function of protein concentration results in a linear (R2 ≥ 0.99) relationship, from which protein levels in biological samples can be calculated with no significant difference from values obtained using absorbance data (RGB versus absorbance curves).


Asunto(s)
Colorimetría , Teléfono Inteligente , Colorimetría/métodos , Proteínas
19.
Food Chem Toxicol ; 164: 113053, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460823

RESUMEN

Analysis of protein content of food is necessary for quality control and is essential for precise labeling. Protein analysis is an issue of great economic and social fondness. Cereals are one of the most important sources of protein in food, livestock and poultry feed. In this article, the technique of extracting protein in 4 types of grains and measuring it by the Bradford method is discussed. The results obtained from this method are compared with the data obtained by the Kjeldahl method. This comparison showed that the Bradford method is more accurate in measuring proteins. Extraction of protein using NaOH at pH 13 can be used as a modified method to release proteins in soybean meal and consequently a Fast and accurate high-performance laboratory determination method for protein content via the Bradford method. The optimum pH value was identified as that of 13 in optimum temperature 40 °C for maximum protein extraction yield (43.6%, w/w). The new method used in this paper has resulted in the measurement of grain protein in the shortest time and with the least toxicity and the highest accuracy.


Asunto(s)
Glycine max , Semillas , Grano Comestible/química , Proteínas , Semillas/química
20.
Water Res ; 213: 118147, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35149367

RESUMEN

Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA