Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274052

RESUMEN

How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work aims to explore the role of gold nanoparticles (AuNPs) in modulating exciplex and excimer states within the conjugated polymer poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP), known for its photoluminescent and semi-conductive properties, aiming to create innovative composite materials with tailored optical features. The spectral analysis was conducted to investigate the effects of AuNPs on the PDDCP, varying AuNP volume percentages to measure changes in the absorption profile, molar extinction coefficient (ε), absorption cross-section (σa), and optical bandgap (Eg). Fluorescence spectra of the mixture at different volume ratios were also examined to assess exciplex formation, while amplified spontaneous emission (ASE) profiles were analyzed to study the behavior and photochemical stability of the polymer-NP hybrid material. Increasing AuNP volume induced both blue and red shifts in the absorption profile of the PDDCP. Higher AuNPs concentrations correlated with decreased ε and σa, inversely impacting Eg. The emission spectra obtained at varied AuNP volume ratios indicated significantly enhanced exciplex and excimer formations. The ASE profiles remained consistent but showed reduced intensity with increasing AuNPs concentrations, indicating their influence on hybrid material behavior and stability. The findings suggest that AuNPs affect PDDCP's optical characteristics, altering the absorption profile, bandgap, and fluorescence spectra. Furthermore, the observed reduction in ASE intensity highlights their influence on the behavior and photochemical stability of the hybrid material. These results contribute to a better understanding of the versatile applications of plasmonic-conjugated hybrid polymers.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39283967

RESUMEN

The use of harmful halogenated or aromatic solvents such as chloroform (CF), chlorobenzene (CB), and o-xylene (o-XY) is one of the greatest barriers to the industrial-scale manufacturing of high-performance organic solar cells (OSCs). Therefore, it is necessary to eliminate the effects of these solvents to ensure practical feasibility of OSCs. We found that the anthracene-terminated polymer donor and small-molecule acceptor BO-4Cl had good solubility in 3-methylthiophene (3-MeT). There were no toxicity labels in the SDS and exposure control limits for 3-MeT. An overall power conversion efficiency of 16.87% was achieved by using 3-MeT as the solvent for solar cell fabrication, which was higher than that of the cells made from CF (16.18%) and o-XY (15.69%). The best OSC based on PM6:D18:L8-BO and fabricated with 3-MeT exhibited a high PCE of 18.13%, which is one of the highest values for cells fabricated from halogen-free solvents. These results indicate that 3-MeT is an eco-friendly and low-toxicity solvent for the sustainable fabrication of the OSC active layer.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39284797

RESUMEN

Recovery of homogeneous photocatalysts from reaction mixture is challenging, affecting the cost-effectiveness, and masks their advantages, including 4-8 fold higher catalytic activity than corresponding heterogeneous counterparts. Incorporation of long alkyl chains within the rigid π-conjugated backbone of conjugated polymers can augment their solubility in particular organic solvents; accordingly, they can function as homogeneous photocatalysts. Consequently, these polymers facilitate the recovery of catalysts through the reverse dissolution process, thus creating a well-suited platform to meet certain advantages of both homo- and heterogeneous photocatalysts. This work exemplifies the unprecedented perks of donor-acceptor conjugated polymers from benzodithiophene and substituted dibenzothiophene sulfone moieties for their homogeneous phase photoredox activities along with their heterogeneous recovery and reuse up to five runs. The potential intermediate singlet oxygen (1O2) and superoxide (O2•-) as reactive oxygen species generated by these photostable conjugated polymers efficiently catalyze the visible-light-driven oxidation of aryl sulfides (up to 92% yield) and oxidative hydroxylation of phenylboronic acids (up to 93% yield), respectively. Therefore, to actualize the heightened catalytic performance and formulate a design strategy for polymeric photoredox catalyst, our work introduces an alternative approach to the advancement of photocatalysis with diverse catalytic activities.

4.
Small ; : e2405514, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221645

RESUMEN

Rational construction of high-efficiency photoelectrodes with optimized carrier migration to the ideal active sites, is crucial for enhancing solar water oxidation. However, complexity in precisely modulating interface configuration and directional charge transfer pathways retards the design of robust and stable artificial photosystems. Herein, a straightforward yet effective strategy is developed for compact encapsulation of metal oxides (MOs) with an ultrathin non-conjugated polymer layer to modulate interfacial charge migration and separation. By periodically coating highly ordered TiO2 nanoarrays with oppositely charged polyelectrolyte of poly(dimethyl diallyl ammonium chloride) (PDDA), MOs/polymer composite photoanodes are readily fabricated under ambient conditions. It is verified that electrons photogenerated from the MOs substrate can be efficiently extracted by the ultrathin solid insulating PDDA layer, significantly boosting the carrier transport kinetics and enhancing charge separation of MOs, and thus triggering a remarkable enhancement in the solar water oxidation performance. The origins of the unexpected electron-withdrawing capability of such non-conjugated insulating polymer are unambiguously uncovered, and the scenario occurring at the interface of hybrid photoelectrodes is elucidated. The work would reinforce the fundamental understanding on the origins of generic charge transport capability of insulating polymer and benefit potential wide-spread utilization of insulating polymers as co-catalysts for solar energy conversion.

5.
Angew Chem Int Ed Engl ; : e202406527, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137101

RESUMEN

Photosynthetic microorganisms, which rely on light-driven electron transfer, store solar energy in self-energy carriers and convert it into bioenergy. Although these microorganisms can operate light-induced charge separation with nearly 100% quantum efficiency, their practical applications are inherently limited by the photosynthetic energy conversion efficiency. Artificial semiconductors can induce an electronic response to photoexcitation, providing additional excited electrons for natural photosynthesis to improve solar conversion efficiency. However, challenges remain in importing exogenous electrons across cell membranes. In this work, we have developed an engineered gold nanocluster/organic semiconductor heterostructure (AuNC@OFTF) to couple the intracellular electron transport chain of living cyanobacteria. AuNC@OFTF exhibits a prolonged excited state lifetime and effective charge separation. The internalized AuNC@OFTF permits its photogenerated electrons to participate in the downstream of photosystem II and construct an oriented electronic highway, which enables a five-fold increase in photocurrent in living cyanobacteria. Moreover, the binding events of AuNC@OFTF established an abiotic-biotic electronic interface at the thylakoid membrane to enhance electron flux and finally furnished nicotinamide adenine dinucleotide phosphate. Thus, AuNC@OFTF can be exploited to spatiotemporally manipulate and enhance the solar conversion of living cyanobacteria in cells, providing an extended nanotechnology for re-engineering photosynthetic pathways.

6.
Sci Total Environ ; 951: 175765, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39209166

RESUMEN

Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs. The resultant two CPNPs were explored as extremely attractive matrix for tyrosinase immobilization to construct electrochemical biosensing platforms for sensitive and rapid detection of BPA in water environments. The electrochemical performance of these two biosensors was significantly enhanced, benefiting from the large specific surface area and excellent biocompatibility of CPNPs, as well as the strong π-π interaction between CPNPs and BPA. The current response of PDTS-ehDTBT-Tyr-Chi/GCE exhibited a good linear relationship with BPA concentration ranging from 0.02 to 3.0 µM with a low detection limit of 11.83 nM and a high sensitivity of 0.9724 µA µM-1 cm-2. The fabricated biosensor was further used for BPA detection in actual samples with a recovery rate of 92.0 %-99.4 %. With the remarkable advantages, CPNPs-based biosensor provides a highly sensitive detection tool for rapid detection of BPA in actual samples, which has broad application prospects.


Asunto(s)
Compuestos de Bencidrilo , Técnicas Biosensibles , Monofenol Monooxigenasa , Nanopartículas , Fenoles , Polímeros , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Técnicas Biosensibles/métodos , Polímeros/química , Nanopartículas/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Disruptores Endocrinos/análisis
7.
ACS Appl Mater Interfaces ; 16(36): 48016-48024, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213484

RESUMEN

Understanding charge transport in conjugated polymers is crucial for the development of next-generation organic electronic applications. It is presumed that structural disorder in conjugated polymers originating from their semicrystallinity, processing, or polymorphism leads to a complex energetic landscape that influences charge carrier transport properties. However, the link between polymer order parameters and energetic landscape is not well established experimentally. In this work, we successfully link statistical surveys of the local polymer electronic structure with paracrystalline structural disorder, a measure of statistical fluctuations away from the ideal polymer packing structure. We use scanning tunneling microscopy/spectroscopy to measure spatial variability in electronic band edges in PM6 films, a high-performance conjugated polymer, and find that films with higher paracrystallinity exhibit greater electronic disorder, as expected. In addition, we show that macroscopic charge carrier mobility in field effect transistors and and trap influence in hole-only diode devices is positively correlated with these microscopic structural and electronic parameters.

8.
ACS Infect Dis ; 10(8): 2999-3012, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082818

RESUMEN

The rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited. In this study, we present the fabrication of polymer-silver bromide nanocomposites using amino acid conjugated polymers (ACPs) through a green and water-based in situ technique. The nanocomposite architecture facilitated prolonged and controlled release of the active components. Remarkably, the nanocomposites exhibited broad-spectrum activity against multidrug-resistant (MDR) human pathogenic bacteria (MIC = 2-16 µg/mL) and fungi (MIC = 1-8 µg/mL), while displaying no detectable toxicity to human erythrocytes (HC50 > 1024 µg/mL). In contrast to existing antimicrobials and silver-based therapies, the nanocomposite effectively eradicated bacterial, fungal, and polymicrobial biofilms, and prevented the development of microbial resistance due to their membrane-active properties. Furthermore, the lead polymer-silver bromide nanocomposite demonstrated a 99% reduction in the drug-resistant Pseudomonas aeruginosa burden in a murine model of burn wound infection, along with excellent in vivo biocompatibility.


Asunto(s)
Biopelículas , Quemaduras , Pruebas de Sensibilidad Microbiana , Nanocompuestos , Polímeros , Infección de Heridas , Biopelículas/efectos de los fármacos , Nanocompuestos/química , Animales , Ratones , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Humanos , Quemaduras/tratamiento farmacológico , Polímeros/química , Polímeros/farmacología , Compuestos de Plata/farmacología , Compuestos de Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Aminoácidos/química , Aminoácidos/farmacología , Bromuros/química , Bromuros/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias/efectos de los fármacos
9.
Food Chem ; 458: 140291, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959795

RESUMEN

Staphylococcus aureus contamination continues to be a harmful foodborne pathogen threatening of human health, and there is a growing need for rapid detection technologies. This study proposed a novel paper biosensor based on a polydiacetylene (PDA) polymer functionalized fibrinogen (Fg) for the detection of S. aureus in food sources. The fluorophore was developed based on the high binding ability of fibrinogen-binding proteins on the surface of S. aureus. This binding caused twisting in the PDA backbone, leading to changes in chromatic and fluorescent. The detection limit of this method was 50.1 CFU/mL for S. aureus-contaminated foodstuffs and 65.0 CFU/mL for the pure S. aureus culture, and the novelty came from its rapidity and selectivity for S. aureus compared to other foodborne bacteria. In summary, the present work provides a rapid detection method for S. aureus detection, which will help in addressing food safety-related issues.


Asunto(s)
Técnicas Biosensibles , Fibrinógeno , Contaminación de Alimentos , Papel , Polímero Poliacetilénico , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Técnicas Biosensibles/instrumentación , Polímero Poliacetilénico/química , Contaminación de Alimentos/análisis , Fibrinógeno/química , Fibrinógeno/metabolismo , Microbiología de Alimentos , Límite de Detección , Polímeros/química
10.
J Nanobiotechnology ; 22(1): 451, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080708

RESUMEN

The lack of a simple design strategy to obtain ideal conjugated polymers (CPs) with high absorbance and fluorescence (FL) in the near-infrared-II (NIR-II; 1000-1700 nm) region still hampers the success of NIR-II light-triggered phototheranostics. Herein, novel phototheranostic nanoparticles (PPN-NO NPs) were successfully prepared by coloading a cationic NIR-II CPs (PBC-co-PBF-NMe3) and a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) onto a 1:1 mixture of DSPE-PEG5000 and dimyristoylphosphatidylcholine (DMPC) for NIR-II FL and NIR-II photoacoustic (PA) imaging-guided low-temperature NIR-II photothermal therapy (PTT) and gas combination therapy for cancer treatment. A precise NIR-II FL dually enhanced design tactic was proposed herein by integrating flexible nonconjugated segments (C6) into the CPs backbone and incorporating quaternary ammonium salt cationic units into the CPs side chain, which considerably increased the radiative decay pathway, resulting in desirable NIR-II FL intensity and balanced NIR-II absorption and NIR PTT properties. The phototheranostic PPN-NO NPs exhibited distinguished NIR-II FL and PA imaging performance in tumor-bearing mice models. Furthermore, the low-temperature photothermal effect of PPN-NO NPs could initiate NO release upon 980 nm laser irradiation, efficiently suppressing tumor growth owing to the combination of low-temperature NIR-II PTT and NO gas therapy in vitro and in vivo.


Asunto(s)
Cationes , Nanopartículas , Terapia Fototérmica , Polímeros , Animales , Ratones , Polímeros/química , Terapia Fototérmica/métodos , Humanos , Nanopartículas/química , Cationes/química , Rayos Infrarrojos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Fluorescencia , Técnicas Fotoacústicas/métodos , Ratones Desnudos , Femenino , Nanomedicina Teranóstica/métodos
11.
Small ; : e2402016, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082417

RESUMEN

Solid-state electrochemical energy systems have attracted numerous attentions for their excellent performance, high safety, and low cost. Recently, ice of aqueous electrolytes is reported as a new kind solid-state electrolyte for low-temperature solid-state devices. However, the lack of kinetically favorable electrodes hampers the performance of this new class of icy electrolyte-based solid-state devices at sub-zero temperatures. In this work, a hydrated layered polyaniline cathode active material (h-LPANi) with nanoconfined supercooled water by metatungstate clusters is utilized to improve the performance of sub-zero solid-state zinc ion hybrid capacitors (ZIHCs). The interlayer confined hydrated network of h-LPANi improves kinetics, surpassing pristine polyaniline and conventional porous carbon-based active materials. At -15 °C, the solid-state iced ZIHCs with h-LPANi cathode demonstrate an areal energy density of 580.0 µWh cm-2 at 1.1 mW cm-2 and 155.7 µWh cm-2 at 43.3 mW cm-2, surpassing other low-temperature solid-state ZIHCs with conventional cathodes.

12.
ACS Appl Mater Interfaces ; 16(29): 38324-38333, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982664

RESUMEN

With the increasing demand for elastic electronics, as a crucial component, elastic semiconductors have been widely studied. However, there are some issues for the current preparation of elastic semiconductors, such as harsh reaction conditions, low atomic economic utilization, and complicated product separation and purification. Aldehyde-amine polycondensation is an important chemical reaction with the advantages of mild reaction conditions, high atomic-economic efficiency, and easy separation and purification. Herein, intrinsically elastic semiconductors are developed via aldehyde-amine polycondensation, including a semiconducting segment and an elastic segment. The resulting polymer containing 42.62 wt % soft segments exhibits excellent stretchability and mechanical reversibility, especially with a lower modulus. Interestingly, the carrier mobility displays up to 0.04 cm2·V-1·s-1, in the range of the fully conjugated reference polymer (0.1 cm2·V-1·s-1). In brief, this strategy provides important guiding principles for the development of intrinsically elastic polymer semiconductors.

13.
Macromol Rapid Commun ; : e2400456, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047159

RESUMEN

Mn-catalyzed hydroarylation polyaddition of 1-(2-pyrimidinyl)pyrrole (1a) with aromatic diynes is investigated. The use of commercially available MnBr(CO)5 as a precatalyst under the optimized reaction conditions resulted in a site- and regioselective hydroarylation polyaddition, affording the corresponding poly(arylenevinylene)s (PAVs) with excellent vinylene selectivity. The reaction protocol eliminates the production of stoichiometric amounts of byproducts from the monomers. The nonstoichiometric polyaddition of an excess amount of 1a with aromatic diynes is also demonstrated. The 2-pyrimidinyl substituent promoted the intramolecular transfer of the Mn catalyst walking through the 1a moiety.

14.
Small ; : e2403176, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949041

RESUMEN

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

15.
ACS Appl Mater Interfaces ; 16(29): 38478-38489, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007528

RESUMEN

Conjugated polymer nanoparticles (CPNs or Pdots) have become increasingly popular fluorophores for multimodal applications that combine imaging with phototherapeutic effects. Reports of CPNs in photodynamic therapy applications typically focus on their ability to generate singlet oxygen. Alternatively, CPN excited states can interact with oxygen to form superoxide radical anion and a CPN-based hole polaron, both of which can have deleterious effects on fluorescence properties. Here, we demonstrate that CPNs prepared from the common conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT, also known as F8BT) generate superoxide upon irradiation. We use the same CPNs to detect superoxide by doping them with a superoxide-responsive hydrocyanine dye developed by Murthy and co-workers. Superoxide induces off-to-on fluorescence switching by converting quenching hydrocyanine dyes to fluorescent cyanine dyes that act as fluorescence resonance energy transfer (FRET) acceptors for PFBT chromophores. Amplified FRET from the multichromophoric CPNs yields fluorescence signal intensities that are nearly 50 times greater than when the dye is excited directly or over 100 times greater when signal readout is from the CPN channel. The dye loading level governs the maximum amount of superoxide that induces a change in fluorescence properties and also influences the rate of superoxide generation by furnishing competitive excited state deactivation pathways. These results suggest that CPNs can be used to deliver superoxide in applications in which it is desirable and provide a caution for fluorescence-based CPN applications in which superoxide can damage fluorophores.

16.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000739

RESUMEN

To explore a highly conductive flexible platform, this study develops PIDF-BT@SWCNT by wrapping single-walled carbon nanotubes (SWCNTs) with a conjugated polymer, PIDF-BT, known for its effective doping properties. By evaluating the doping behaviors of various dopants on PIDF-BT, appropriate dopant combinations for cascade doping are selected to improve the doping efficiency of PIDF-BT@SWCNT. Specifically, using F4TCNQ or F6TCNNQ as the first dopant, followed by AuCl3 as the second dopant, demonstrates remarkable doping efficiency, surpassing that of the individual dopants and yielding an exceptional electrical conductivity exceeding 6000 S/cm. Characterization using X-ray photoelectron spectroscopy and Raman spectroscopy elucidates the doping mechanism, revealing an increase in the proportion of electron-donating atoms and the ratio of quinoid structures upon F4TCNQ/AuCl3 cascade doping. These findings offer insights into optimizing dopant combinations for cascade doping, showcasing its advantages in enhancing doping efficiency and resulting electrical conductivity compared with single dopant processes.

17.
Small ; : e2403651, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934537

RESUMEN

Conjugated polymer sorting is recognized as an efficient and scalable method for the selective extraction of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, this process typically requires the use of nonpolar and aromatic solvents as the dispersion medium, which are petroleum-based and carry significant production hazards. Moreover, there is still potential for improving the efficiency of batch purification. Here, this study presents fluorene-based conjugated polymer that integrates diamines containing ethylene glycol chains (ODA) as linkers within the main chain, to effectively extract s-SWCNTs in bio-renewable solvents. The introduction of ODA segments enhances the solubility in bio-renewable solvents, facilitating effective wrapping of s-SWCNTs in polar environments. Additionally, the ODA within the main chain enhances affinity to s-SWCNTs, thereby contributing to increased yields and purity. The polymer achieves a high sorting yield of 55% and a purity of 99.6% in dispersion of s-SWCNTs in 2-Methyltetrahydrofuran. Thin-film transistor arrays fabricated with sorted s-SWCNTs solution through slot-die coating exhibit average charge carrier mobilities of 20-23 cm2 V⁻¹ s⁻¹ and high on/off current ratios exceeding 105 together with high spatial uniformity. This study highlights the viability of bio-renewable solvents in the sorting process, paving the way for the eco-friendly approach to the purification of SWCNTs.

18.
Adv Sci (Weinh) ; 11(29): e2401794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828719

RESUMEN

The development of neuromorphic optoelectronic systems opens up the possibility of the next generation of artificial vision. In this work, the novel broadband (from 365 to 940 nm) and multilevel storage optoelectronic synaptic thin-film transistor (TFT) arrays are reported using the photosensitive conjugated polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)], F8T2) sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) as channel materials. The broadband synaptic responses are inherited to absorption from both photosensitive F8T2 and sorted sc-SWCNTs, and the excellent optoelectronic synaptic behaviors with 200 linearly increasing conductance states and long retention time > 103 s are attributed to the superior charge trapping at the AlOx dielectric layer grown by atomic layer deposition. Furthermore, the synaptic TFTs can achieve IOn/IOff ratios up to 106 and optoelectronic synaptic plasticity with the low power consumption (59 aJ per single pulse), which can simulate not only basic biological synaptic functions but also optical write and electrical erase, multilevel storage, and image recognition. Further, a novel Spiking Neural Network algorithm based on hardware characteristics is designed for the recognition task of Caltech 101 dataset and multiple features of the images are successfully extracted with higher accuracy (97.92%) of the recognition task from the multi-frequency curves of the optoelectronic synaptic devices.

19.
ACS Appl Mater Interfaces ; 16(24): 31719-31728, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38836704

RESUMEN

Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases. Electrical properties are not critically damaged even after forming pores in the CP; however, excessive pore formation enables pores to spread to the vicinity of the dielectric layer of CP-based field-effect transistors (FETs), leading to partial loss of the carrier-transporting active channel in the FET. The porous structure is advantageous for not only increasing detection sensitivity but also improving the detection speed when porous CP films are applied to FET-based gas sensors for NO2 detection. The quantitative analysis of the response-recovery trend of the FET sensor using the Langmuir isotherm suggests that the response speed can be improved by more than 2.5 times with a 50-fold increase in NO2 sensitivity compared with pristine CP, which has no pores.

20.
Adv Mater ; 36(30): e2402708, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837440

RESUMEN

Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA