Your browser doesn't support javascript.
loading
Photoprogrammed Multifunctional Optoelectronic Synaptic Transistor Arrays Based on Photosensitive Polymer-Sorted Semiconducting Single-Walled Carbon Nanotubes for Image Recognition.
Sui, Nianzi; Ji, Yixi; Li, Min; Zheng, Fanyuan; Shao, Shuangshuang; Li, Jiaqi; Liu, Zhaoxin; Wu, Jinjian; Zhao, Jianwen; Li, Lain-Jong.
Afiliación
  • Sui N; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Ji Y; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Li M; School of Artificial Intelligence, Xidian University, Xi'an, 710071, P. R. China.
  • Zheng F; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Shao S; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Li J; Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China.
  • Liu Z; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Wu J; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Zhao J; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
  • Li LJ; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China.
Adv Sci (Weinh) ; 11(29): e2401794, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38828719
ABSTRACT
The development of neuromorphic optoelectronic systems opens up the possibility of the next generation of artificial vision. In this work, the novel broadband (from 365 to 940 nm) and multilevel storage optoelectronic synaptic thin-film transistor (TFT) arrays are reported using the photosensitive conjugated polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)], F8T2) sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) as channel materials. The broadband synaptic responses are inherited to absorption from both photosensitive F8T2 and sorted sc-SWCNTs, and the excellent optoelectronic synaptic behaviors with 200 linearly increasing conductance states and long retention time > 103 s are attributed to the superior charge trapping at the AlOx dielectric layer grown by atomic layer deposition. Furthermore, the synaptic TFTs can achieve IOn/IOff ratios up to 106 and optoelectronic synaptic plasticity with the low power consumption (59 aJ per single pulse), which can simulate not only basic biological synaptic functions but also optical write and electrical erase, multilevel storage, and image recognition. Further, a novel Spiking Neural Network algorithm based on hardware characteristics is designed for the recognition task of Caltech 101 dataset and multiple features of the images are successfully extracted with higher accuracy (97.92%) of the recognition task from the multi-frequency curves of the optoelectronic synaptic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article Pais de publicación: Alemania