Your browser doesn't support javascript.
loading
Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections.
Barman, Swagatam; Dey, Rajib; Ghosh, Sreyan; Mukherjee, Riya; Mukherjee, Sudip; Haldar, Jayanta.
Afiliación
  • Barman S; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
  • Dey R; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
  • Ghosh S; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
  • Mukherjee R; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
  • Mukherjee S; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
  • Haldar J; Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India.
ACS Infect Dis ; 10(8): 2999-3012, 2024 Aug 09.
Article en En | MEDLINE | ID: mdl-39082818
ABSTRACT
The rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited. In this study, we present the fabrication of polymer-silver bromide nanocomposites using amino acid conjugated polymers (ACPs) through a green and water-based in situ technique. The nanocomposite architecture facilitated prolonged and controlled release of the active components. Remarkably, the nanocomposites exhibited broad-spectrum activity against multidrug-resistant (MDR) human pathogenic bacteria (MIC = 2-16 µg/mL) and fungi (MIC = 1-8 µg/mL), while displaying no detectable toxicity to human erythrocytes (HC50 > 1024 µg/mL). In contrast to existing antimicrobials and silver-based therapies, the nanocomposite effectively eradicated bacterial, fungal, and polymicrobial biofilms, and prevented the development of microbial resistance due to their membrane-active properties. Furthermore, the lead polymer-silver bromide nanocomposite demonstrated a 99% reduction in the drug-resistant Pseudomonas aeruginosa burden in a murine model of burn wound infection, along with excellent in vivo biocompatibility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Infección de Heridas / Quemaduras / Pruebas de Sensibilidad Microbiana / Biopelículas / Nanocompuestos Límite: Animals / Humans Idioma: En Revista: ACS Infect Dis Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Polímeros / Infección de Heridas / Quemaduras / Pruebas de Sensibilidad Microbiana / Biopelículas / Nanocompuestos Límite: Animals / Humans Idioma: En Revista: ACS Infect Dis Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos