Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Nutr ; 11: 1387130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725576

RESUMEN

Chickpeas (Cicer arietinum L.) are used as a good source of proteins and energy in the diets of various organisms including humans and animals. Chickpea straws can serve as an alternative option for forage for different ruminants. This research mainly focussed on screening the effects of adding beneficial chickpea seed endophytes on increasing the nutritional properties of the different edible parts of chickpea plants. Two efficient chickpea seed endophytes (Enterobacter sp. strain BHUJPCS-2 and BHUJPCS-8) were selected and applied to the chickpea seeds before sowing in the experiment conducted on clay pots. Chickpea seeds treated with both endophytes showed improved plant growth and biomass accumulation. Notably, improvements in the uptake of mineral nutrients were found in the foliage, pericarp, and seed of the chickpea plants. Additionally, nutritional properties such as total phenolics (0.47, 0.25, and 0.55 folds), total protein (0.04, 0.21, and 0.18 folds), carbohydrate content (0.31, 0.32, and 0.31 folds), and total flavonoid content (0.45, 027, and 0.8 folds) were increased in different parts (foliage, pericarp, and seed) of the chickpea plants compared to the control plants. The seed endophyte-treated plants showed a significant increase in mineral accumulation and improvement in nutrition in the different edible parts of chickpea plants. The results showed that the seed endophyte-mediated increase in dietary and nutrient value of the different parts (pericarp, foliage, and seeds) of chickpea are consumed by humans, whereas the other parts (pericarp and foliage) are used as alternative options for forage and chaff in livestock diets and may have direct effects on their nutritional conditions.

2.
Front Plant Sci ; 15: 1335158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799100

RESUMEN

Chickpea pod borer (CPB) (Helicoverpa armigera) is one of the major pests, causing significant yield losses. The objectives were to screen chickpea mutants for pod borer resistance/tolerance under field conditions and identification of biochemical markers of tolerance. Chickpea mutant CM216-A/15 had highest leaf (25 trichomes/mm2) and stem trichome density (17 trichomes/mm2) with least pod damage at Kallur Kot and highest pod weight per plant (22.8 ± 2.6g) at AZRI. Higher total phenolic contents (TPCs) and antioxidant capacity were detected in tolerant mutants, i.e., CM216-A/15 and CM664/15. TPC was positively associated with pod yield and had negative correlation with pod damage. Mutants CM216-A/15, CM664/15, and CM766/15 depicted the highest resilience to CPB, owing to higher hairiness, better antioxidant defense response, and lower levels of hydrolytic enzymes and sugars. Identified biochemical markers like TPC, total oxidant status, superoxide dismutase, and pigments can be used for screening of CPB-tolerant/resistant mutants.

3.
Antioxidants (Basel) ; 13(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38671907

RESUMEN

Legumes, one of the first crops of humanity, inherently constitute a staple nutritional source for mankind, attracting significant research attention that has been afforded to the development of numerous cultivars. The study herein concerns the exploitation of the nutritional and bio-functional content of beans harvested from eleven Greek cultivars belonging to five different species, namely Cicer arietinum L., Pisum sativum L., Vicia faba L., Lens culinaris L., and Phaseolus vulgaris L. The final goal is to define their varietal identity and correlate their phytochemical content with their potential utilization as functional foods and/or feed of high nutritional value. In this respect, their extracts were screened against the presence of 27 fatty acids and 19 phenolic compounds, revealing the presence of 22 and 15 molecules, respectively. Specifically, numerous fatty acids were detected in significant amounts in all but C. arietinum extract, while significant polyphenolic content was confirmed only in P. vulgaris. Among individual compounds, linoleic acid was the major fatty acid detected in amounts averaging more than 150 mg/g, followed by oleic acid, which was present as a major compound in all extracts. Among the nine polyphenols detected in P. vulgaris, the molecules of genistein (3.88 mg/g) and coumestrol (0.82 mg/g) were the most abundant. Their antioxidant properties were evaluated through DPPH and FRAP assays, which were highlighted as most potent in both tests of the V. faba extract, while C. arietinum was determined as totally inactive, indicating a potential correlation between the phenolic content of the plant species and antioxidant activity. These results are indicative of the significant advances achieved for the cultivars investigated and reveal their important role as nutritional crops for human and animal consumption.

4.
Life (Basel) ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276277

RESUMEN

Chickpeas (Cicer arietinum L.) are a valuable legume crop due to their nutritional value. To maintain chickpea productivity and avoid the adverse effects of climate change on soil and plant processes, it is crucial to address demand. Achieving this necessitates implementing sustainable agricultural practices incorporating the use of biostimulants, adaptable crops for arid conditions, as well as pest and disease-resistant crops that are sustainable over time. Three varieties of chickpeas were analysed to determine the effect of two different biostimulant application methods on both germination and vegetative growth. Possible effects due to location were also examined by conducting tests at two different sites. Significant variations in biostimulant response were evident only during the germination period, but not during the vegetative development stage, where the observed statistical differences were influenced more by the location or variety of chickpeas employed. Furthermore, this study examined the effect of biostimulants on nutrient cycling within the soil-plant microbiota system. Nitrogen-fixing bacteria (NFB) are present in the soil of chickpea crops at an order of magnitude of 107 CFU/g DS. Additionally, an average concentration of 106 CFU/g DS of phosphorus-mobilising bacteria was observed. Applying biostimulants (BioE) to seeds resulted in a successful germination percentage (GP) for both Amelia (AM) and IMIDRA 10 (IM) varieties.

5.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687340

RESUMEN

Germination is a simple process that improves the nutritional and medicinal values of seeds such as chickpeas. However, the detailed analysis of the phytochemical profile after chemical elicitation during chickpea germination is indispensable when making inferences about its biological properties. Therefore, an evaluation was made of the effect of the chemical inducers salicylic acid (SA, 1 and 2 mM), chitosan (CH, 3.3 and 7 µM), and hydrogen peroxide (H2O2, 20 and 30 mM) during germination at 25 °C with 70% RH for 4 days on the content of antinutritional and bioactive compounds, including phenolics, sterols, and saponins, in three Mexican chickpea varieties (Blanoro, Patron, and San Antonio) using UPLC-ELSD-ESI-QqQ-MS/MS, UPLC-DAD-ESI-QqQ-MS/MS, and HPLC-DAD-sQ-MS. The highest increase in phenolics and saponins was found in the Blanoro sprouts induced with SA 2 mM, whereas the highest phytosterol content was detected in San Antonio sprouts induced with CH 7 µM. In addition, significant increases in mono-, di-, and oligosaccharides and decreases in antinutritional contents were achieved after germination with most of the elicitation conditions. More importantly, we identified new compounds in chickpea sprouts, such as the lignans matairesinol and secoisolariciresinol, the phenolic compounds epicatechin gallate and methyl gallate, some phytosterols, and the saponin phaseoside 1, which further increased after chemical elicitation.

6.
Environ Sci Pollut Res Int ; 30(38): 89616-89626, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454382

RESUMEN

Intercropping of specific accumulators with industrial crops is used in moderately metal contaminated agricultural land. The distribution characteristics and environmental risks of non-accumulated ions in intercropping fields have rarely been reported. This study analyzed dissolved organic matter (DOM) fractionation and metal chemical forms to investigate the bioavailability, transformation, and uptake of non-hyperaccumulated metals in different cultivation patterns of a Cd hyperaccumulator (Sedum alfredii Hance) and a commercial crop (Cicer arietinum L.). The study focused on the distribution and transformation of heavy metals, with a particular emphasis on the role of DOM in intercropping. The contents of DOM in the rhizosphere soils of the Cd hyperaccumulator monoculture and the intercropping field were obviously greater than the DOM concentration in the commercial crop monoculture. The content of soluble Cd was significantly lower in the former two planting patterns than in the latter. In contrast, soluble Pb and Cu exhibited opposite content characteristics. In addition, the metal extraction ability of DOM extracted from the C. arietinum monoculture was lower than those from the Cd hyperaccumulator monoculture and the intercropping field. The concentrations of Cd in both below-ground and aerial parts of C. arietinum intercropping were significantly lower than those in its monoculture, since S. alfredii depleted soil Cd. Contrastingly, the contents of Cu and Pb in C. arietinum harvested from intercropping were significantly greater than those in its monoculture because the intercropped Cd hyperaccumulator activated Cu and Pb by changing soil DOM content and fractionations without absorbing them. The findings provide valuable insights into the use of intercropping to remediate moderately metal-contaminated agricultural land and highlight the potential risks associated with intercropping in multi-metal-contaminated fields.


Asunto(s)
Agricultura , Cicer , Sedum , Sedum/metabolismo , Cicer/metabolismo , Agricultura/métodos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Metales/análisis , Metales/metabolismo , Cadmio/análisis , Cadmio/metabolismo , Plomo/análisis , Plomo/metabolismo , Materia Orgánica Disuelta , Suelo/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos
7.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37427826

RESUMEN

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

8.
Phytochem Anal ; 34(8): 997-1008, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37518935

RESUMEN

INTRODUCTION: Cicer arietinum L. is the choice of health food for people with diabetes, hypertension, and hyperlipidemia. As an essential source of high-nutrition legumes, it is also an important source of dietary isoflavones. OBJECTIVES: In order to improve the preparation efficiency of natural plants, a rapid biological activity screening and preparation of xanthine oxidase inhibitors from C. arietinum L. was established. METHODS: Xanthine oxidase (XOD) inhibitors were rapidly screened using ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS) based on receptor-ligand affinity. The change in XOD activity was evaluated by enzymatic reaction kinetics measurement. The potential bioactive compounds were verified through molecular docking. In addition, the biological activity of ligands screened was separated and purified by complex chromatography. The structures of the compounds were identified by nuclear magnetic resonance spectroscopy. RESULTS: Three active ingredients, namely daidzin, daidzein, calycosin with XOD binding affinities were identified and isolated from the raw plant materials via semi-preparative high-performance liquid chromatography (HPLC), 0-60 min, 5-50% B and countercurrent chromatography (CCC) (ethyl acetate/acetic acid/water [5:0.8:10, v/v/v]). CONCLUSION: This study will help to elucidate the mechanisms of action of natural plants of interest at the molecular level and could also provide more opportunities for the discovery and development of new nutritional value from other natural resources.


Asunto(s)
Cicer , Xantina Oxidasa , Humanos , Cicer/metabolismo , Simulación del Acoplamiento Molecular , Ligandos , Cromatografía Liquida/métodos , Inhibidores Enzimáticos/farmacología , Cromatografía Líquida de Alta Presión/métodos
9.
Front Plant Sci ; 14: 1191457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360702

RESUMEN

Salinity is a major abiotic stress that causes substantial agricultural losses worldwide. Chickpea (Cicer arietinum L.) is an important legume crop but is salt-sensitive. Previous physiological and genetic studies revealed the contrasting response of two desi chickpea varieties, salt-sensitive Rupali and salt-tolerant Genesis836, to salt stress. To understand the complex molecular regulation of salt tolerance mechanisms in these two chickpea genotypes, we examined the leaf transcriptome repertoire of Rupali and Genesis836 in control and salt-stressed conditions. Using linear models, we identified categories of differentially expressed genes (DEGs) describing the genotypic differences: salt-responsive DEGs in Rupali (1,604) and Genesis836 (1,751) with 907 and 1,054 DEGs unique to Rupali and Genesis836, respectively, salt responsive DEGs (3,376), genotype-dependent DEGs (4,170), and genotype-dependent salt-responsive DEGs (122). Functional DEG annotation revealed that the salt treatment affected genes involved in ion transport, osmotic adjustment, photosynthesis, energy generation, stress and hormone signalling, and regulatory pathways. Our results showed that while Genesis836 and Rupali have similar primary salt response mechanisms (common salt-responsive DEGs), their contrasting salt response is attributed to the differential expression of genes primarily involved in ion transport and photosynthesis. Interestingly, variant calling between the two genotypes identified SNPs/InDels in 768 Genesis836 and 701 Rupali salt-responsive DEGs with 1,741 variants identified in Genesis836 and 1,449 variants identified in Rupali. In addition, the presence of premature stop codons was detected in 35 genes in Rupali. This study provides valuable insights into the molecular regulation underpinning the physiological basis of salt tolerance in two chickpea genotypes and offers potential candidate genes for the improvement of salt tolerance in chickpeas.

10.
Environ Sci Pollut Res Int ; 30(29): 73612-73627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37191750

RESUMEN

Several phytoremediation strategies have been undertaken to alleviate cadmium (Cd)-mediated injury to crop yield resulting from agricultural land pollution. In the present study, the potentially beneficial effect of melatonin (Me) was appraised. Therefore, chickpea (Cicer arietinum L.) seeds were imbibed for 12 H in distilled water or Me (10 µM) solution. Then, the seeds germinated in the presence or the absence of 200 µM CdCl2 for 6 days. Seedlings obtained from Me-pretreated seeds exhibited enhanced growth traits, reflected by fresh biomass and length increase. This beneficial effect was associated with a decreased Cd accumulation in seedling tissues (by 46 and 89% in roots and shoots, respectively). Besides, Me efficiently protected the cell membrane integrity of Cd-subjected seedlings. This protective effect was manifested by the decreased lipoxygenase activity and the subsequently reduced accumulation of 4-hydroxy-2-nonenal. Melatonin counteracted the Cd-mediated stimulation of the pro-oxidant NADPH-oxidase (90 and 45% decrease compared to non-pretreated Cd-stressed roots and shoots, respectively) and NADH-oxidase activities (almost 40% decrease compared to non-pretreated roots and shoots), preventing, thus, hydrogen peroxide overaccumulation (50 and 35% lesser than non-pretreated roots and shoots, respectively). Furthermore, Me enhanced the cellular content of pyridine nicotinamide reduced forms [NAD(P)H] and their redox state. This effect was associated with the Me-mediated stimulation of the glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase activities, concomitantly with the inhibition of NAD(P)H-consuming activities. These effects were accompanied by the up-regulation of G6PDH gene expression (45% increase in roots) and the down-regulation of the respiratory burst oxidase homolog protein F (RBOHF) gene expression (53% decrease in roots and shoots). Likewise, Me induced an increased activity and gene transcription of the Asada-Halliwell cycle, namely ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, concomitantly with a reduction of the glutathione peroxidase activity. This modulating effect led to the restoration of the redox homeostasis of the ascorbate and the glutathione pools. Overall, current results attest that seed pretreatment with Me is effective in Cd stress relief and can be a beneficial crop-protective approach.


Asunto(s)
Cicer , Melatonina , Antioxidantes/metabolismo , Plantones , Melatonina/metabolismo , Cadmio/metabolismo , Cicer/metabolismo , NAD/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Homeostasis , Semillas/metabolismo , Expresión Génica
11.
Microbiol Spectr ; : e0308222, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744908

RESUMEN

Black root rot disease of Cicer arietinum L. is accountable for substantial loss in chickpea production worldwide. Endophytic Bacillus siamensis CNE6 has previously shown multifaceted plant growth-promoting, broad-spectrum antifungal, and chickpea plant-colonizing potential. In the present study, the strain Bacillus siamensis CNE6 was used for controlling black root rot disease caused by Fusarium solani CRP1 in chickpea. CNE6 showed strong antagonistic potential against CRP1 both in vivo and in vitro. Scanning electron microscopic studies indicated cellular deformation of CRP1 due to production of ß-glucanase, protease, and other secondary metabolites. A total of five compounds were detected from the cell-free supernatant (CFS) of the ethyl acetate (EA) fraction of CNE6 through gas chromatography-mass spectrometry analysis. A confocal microscopic study demonstrated strong inhibition of biofilm formation of the pathogen CRP1 by the EA fraction of CFS of CNE6. Molecular docking analysis revealed that one compound, (2E)-6-methoxy-2-[(4-methoxyphenyl)methylidene]-2,3-dihydro-1-benzofuran-3-one, may inhibit the activity of lanosterol 14-alpha demethylase, which is involved in ergosterol biosynthesis and beta-tubulin assembling. In vivo experiments also showed the efficacy of CNE6 for increasing chickpea growth as well as upregulation of four defense genes (CHI1, PAMP, PR2B, and TF1082) upon pathogenic challenge. Thus, our results strongly suggest a positive role for CNE6 as a prospective biocontrol agent for combating Fusarium solani in chickpea. IMPORTANCE The present work was undertaken to explore an effective biocontrol agent against the destructive black root rot disease of chickpea. We have used an efficient bacterial endophyte, CNE6, which can colonize in the chickpea root system, produce secondary metabolites and enzymes to degrade pathogenic cellular integrity, inhibit pathogenic establishment by rupturing biofilm formation, and induce host immunity upon treatment. Interaction of the bacterial metabolite was also observed with lanosterol 14-alpha demethylase, which is an important component in fungal membrane functioning. Being an endophyte, Bacillus siamensis CNE6 fulfills a suitable criterion as a biocontrol agent to control black root rot disease in chickpea and has huge prospects for use commercially.

12.
Life (Basel) ; 13(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676182

RESUMEN

This study was conducted to determine the effects of heat stress on the physiological and biochemical responses of chickpea (Cicer arietinum L.; Diyar and Küsmen-99) cultivars that are both heat acclimated and non-acclimated. The seedlings were grown in soil for 15 days and then exposed to heat stress (35 °C, 5 days) after heat acclimation (30 °C, 2 days) or non-acclimation (25 °C, 2 days). Chlorophyll a fluorescence (ChlF) measurements were analyzed using the JIP test. Heat acclimation had no significant effect on ChlF parameters. Seedlings exposed to higher temperatures by acclimation were more tolerant in terms of ChlF parameters and Diyar had a better photochemical activity of photosystem II (PSII). Heat stress resulted in a decrease in electron transport efficiency, quantum yield, photosynthetic performance, and driving force in both chickpea cultivars, while K-band, L-band, and quantum yield of dissipation increased, especially in the non-acclimated cultivars. Additionally, ion leakage (RLR), malondialdehyde (MDA) content, and H2O2 synthesis increased in the cultivars, while water content (RWC), chlorophyll (a + b) content, and carotenoid content of the cultivars decreased. On the other hand, the cultivars attempted to eliminate reactive oxygen species (ROS) by increasing the content of anthocyanins and flavonoids and the activity of antioxidant enzymes (SOD and POD) under heat stress. Heat acclimation alleviated the negative effects of heat stress on each cultivar's water content, chlorophyll and carotenoid content, membrane damage, photosynthetic activity, and antioxidant defense systems. The results of this study showed that, by providing heat acclimation more effectively, Diyar was better able to cope with the biochemical and physiological alterations that could be resulted from heat stress.

13.
Toxins (Basel) ; 15(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36668881

RESUMEN

Mycotoxins contamination and pest infestation of foods and feeds represent a pivotal threat for food safety and security worldwide, with crucial implications for human and animal health. Controlled atmosphere could be a sustainable strategy to reduce mycotoxins content and counteract the vitality of deleterious organisms in foodstuff. Ozone treatment (O3, 500 ppb for 30, 60 or 90 min) and high nitrogen concentration (N2, 99% for 21 consecutive days) were tested in the post-harvest management of four batches of Cicer arietinum grains to control the presence of mycotoxigenic fungi and their secondary metabolites, as well as pest (i.e., Callosobruchus maculatus) infestation. At the end of the treatment, O3 significantly decreased the incidence of Penicillium spp. (by an average of -50%, independently to the time of exposure) and reduced the patulin and aflatoxins content after 30 min (-85 and -100%, respectively). High N2 concentrations remarkably reduced mycotoxins contamination (by an average of -94%) and induced pest mortality (at 100% after 5 days of exposure). These results confirm the promising potential of O3 and N2 in post-harvest conservation strategies, leading to further investigations to evaluate the effects on the qualitative characteristics of grains.


Asunto(s)
Cicer , Micotoxinas , Patulina , Vigna , Gorgojos , Humanos , Animales , Micotoxinas/análisis , Hongos/metabolismo , Semillas/química , Patulina/análisis , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis
14.
J Exp Bot ; 74(1): 130-148, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205079

RESUMEN

Flower and seed coat colour are important agronomic traits in chickpea (Cicer arietinum L.). Cultivated chickpeas are of two types namely, desi (dark seeded, purple flowered) and kabuli (light seeded, white flowered). There has been limited information about the molecular mechanism underlying colour variation of flower and seed coats in desi and kabuli chickpea. We profiled the anthocyanin and proanthocyanidin (PA) contents in chickpea flowers and seed coats. Tissue-specific silencing of two genes encoding a basic helix-loop-helix (CabHLH) protein and a tonoplast-localized multidrug and toxic compound extrusion (CaMATE1) transporter in a desi genotype resulted in the reduction in expression of anthocyanin and PA biosynthetic genes and anthocyanin and PA contents in the flower and seed coat, and produced flowers and seeds with kabuli characteristics. Transcriptional regulation of a subset of anthocyanin and PA biosynthetic genes by a natural CabHLH variant and transport assay of a natural CaMATE1 variant explained the association of these alleles with the kabuli phenotype. We carried out a detailed molecular characterization of these genes, and provided evidence that kabuli chickpea flower and seed colour phenotypes can be derived by manipulation of single genes in a desi chickpea background.


Asunto(s)
Cicer , Proantocianidinas , Cicer/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Color , Semillas/genética , Semillas/metabolismo , Flores/genética
15.
Front Microbiol ; 13: 994847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406422

RESUMEN

The present study aimed to identify potential endophytic bacteria antagonistic against three soil-borne fungal pathogens, Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum f.sp. ciceri causing root rot, collar rot, and fungal wilt diseases in chickpea plants, respectively. A total of 255 bacterial endophytes were isolated from the leaves, stems, and roots of seven different crop plants (chickpea, tomato, wheat, berseem, mustard, potato, and green pea). The dual culture-based screening for antifungal properties indicated that three endophytic isolates had strong inhibition (>50%) against all three pathogens tested. Based on morphological, biochemical, and molecular characterization, the selected isolates (TRO4, CLO5, and PLO3) were identified as different strains of Bacillus subtilis. The bacterial endophytes (TRO4 and CLO5) were positive for plant growth promoting (PGP) traits viz., ammonia, siderophore, and indole-3-acetic acid (IAA) production. The bio-efficacy of the endophytes (TRO4, CLO5, and PLO3) was tested by an in planta trial in chickpea pre-challenged with R. solani, S. rolfsii, and F. oxysporum f.sp. ciceri. The B. subtilis strains TRO4 and CLO5 were found to be effective in reducing percent disease incidence (p ≤ 0.05) and enhancing plant growth parameters. The different root parameters viz. root length (mm), surface area (cm2), root diameter (mm), and root volume (cm3) were significantly (p ≤ 0.05) increased in TRO4 and CLO5 inoculated chickpea plants. Confocal Scanning Laser Microscopy showed heavy colonization of bacteria in the roots of endophyte-inoculated chickpea plants. The inoculation of endophytic Bacillus subtilis strains TRO4 and CLO5 in chickpea plants through seed biopriming reduced the accumulation of superoxide, enhanced the plant defense enzymes, and induced the expression of Pathogenesis-Related (PR) genes. Semi-quantitative analysis of defense-related genes showed differential activation of PR genes (60srp and IFR) by endophyte inoculation. The results of the present study reveal the antagonistic potential of B. subtilis strains TRO4 and CLO5 against three major soil-borne fungal pathogens and their ability to suppress wilt complex disease in chickpea plants. This is the first report on the simultaneous suppression of three major soil-borne fungal pathogens causing wilt complex in chickpea plants by endophytic B. subtilis strains.

16.
Nutrients ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36235722

RESUMEN

Undernutrition and mineral deficiencies negatively impact both the health and academic performance of school children, while diets high in phytic acid and some phenolics inhibit the absorption of minerals such as iron and zinc. This study developed instant porridge powders rich in iron and zinc using pregelatinized chickpea flour (PCPF) and pregelatinized foxtail millet flour (PFMF) and assessed the potential of utilizing roselle calyx powder (RCP) as a source of organic acids to enhance its iron and zinc bioaccessibility. Physical properties, nutrients, mineral inhibitors and in vitro iron and zinc bioaccessibility of different proportions of PCPF, PFMF and RCP in instant porridge powders were evaluated. Three instant porridge powder formulations including instant chickpea powder (ICP) using PCPF, instant composite flour (ICF) using PCPF and PFMF and instant pulse porridge powder (IPP) using PCPF, PFMF and RCP were developed. Results show that all instant porridge powders were accepted by sensory evaluation, while different ingredients impacted color, consistency and the viscosity index. Addition of RCP improved the bioaccessibility of iron (1.3-1.6-fold) and zinc (1.3-1.9-fold). A 70 g serving of these instant porridge powders substantially contributed to daily protein, iron and zinc requirement for children aged 7-9 years. These porridge powders hold potential to serve as school meals for young children in low-to-middle income countries.


Asunto(s)
Hibiscus , Desnutrición , Niño , Preescolar , Alimentos Fortificados , Humanos , Hierro , Minerales , Ácido Fítico , Polvos , Zinc
17.
Saudi J Biol Sci ; 29(12): 103464, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36199518

RESUMEN

The effect of saline irrigation (ECiw 6 dS m-1 and 9 dS m-1) on the roots of Cicer arietinum L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes. Cell turgor was maintained in tolerant genotypes through optimum water relations and osmoprotectants (proline and total soluble sugars) than the sensitive cultivars. Salinity caused oxidative stress as increased hydrogen peroxide and malondialdehyde were noticed, where low accumulation was observed in tolerant genotypes due to the higher activity of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and peroxidase). Na+/K+ ratio increased, but more increment was reported in sensitive cultivars. Gene expression studies depicted that genes encoding pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase got upregulated and that of proline dehydrogenase was downregulated and more fold change with respect to control was in the salt tolerant check CSG 8962 and the genotype KWR 108. Higher expression of the genes encoding reactive oxygen species scavenging enzymes namely, superoxide dismutase, catalase, peroxidase, and those involved in the ascorbate-glutathione cycle was noticed in KWR 108 and CSG 8962 than ICC 4463. Enhanced expression of sodium transporter HKT1 due to salinity can be correlated with ion homeostasis maintenance. Cumulative effects of osmolytes, enzymatic antioxidants and maintaining ion homeostasis in root enable chickpea plants to survive in saline environments.

18.
Int J Biometeorol ; 66(10): 2105-2115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36070035

RESUMEN

In this study, we examined the relationships between extremes of low temperatures and chickpea yield in 12 field experiments conducted at six sites in the subtropical environment of southeast Queensland (SEQ) from 2014 to 2019. Three commercial chickpea cultivars, PBA-Boundary, PBA-HatTrick and PBA-Seamer, were grown in all the experiments. Cultivars PBA-Pistol, PBA-Monarch and Kyabra were also included in three of these experiments conducted in 2015. In these experiments, the crop experienced a total of 8 to 41 frosts (minimum temperature < = 0 °C), 2 to 41 pre-flowering frosts, 2 to 19 frosts during the critical period, 0 to 13 frosts and 2 to 71 low-temperature days (< = 15 °C) after flowering. The mean yield, which varied from 1 to 3 t/ha, was negatively related to post-flowering frosts (r = - 0.74, p < 0.01) and low-temperature days (r = - 0.76, p < 0.01), and positively related to pre-flowering frosts (r = 0.67, p < 0.05). Each post-flowering frost was associated with a 5% decrease and a low-temperature day with a 1% decrease in yield. The cultivar × site interaction was significant only in the three experiments with six commercial cultivars. This interaction was most likely due to an increase in the sensitivity range with additional cultivars, as indicated by frost damage scores and their relationships with yield. The results imply that extreme low-temperature events after flowering could negatively impact chickpea yield in SEQ and similar subtropical environments. Overcoming these effects through management and breeding should increase and stabilise chickpea yield.


Asunto(s)
Cicer , Australia , Frío , Grano Comestible , Temperatura
19.
Front Genet ; 13: 900253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937986

RESUMEN

Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.

20.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740036

RESUMEN

Chickpeas are rich sources of bioactive compounds such as phenolic acids, flavonoids, and isoflavonoids. However, the contribution of insoluble-bound phenolics to their antioxidant properties remains unclear. Four varieties of chickpeas were evaluated for the presence of soluble (free and esterified) and insoluble-bound phenolics as well as their antiradical activity, reducing power and inhibition of peroxyl-induced cytotoxicity in human HuH-7 cells. In general, the insoluble-bound fraction showed a higher total phenolic content. Phenolic acids, flavonoids, and isoflavonoids were identified and quantified by UPLC-MS/MS. Taxifolin was identified for the first time in chickpeas. However, m-hydroxybenzoic acid, taxifolin, and biochanin A were the main phenolics found. Biochanin A was mostly found in the free fraction, while m-hydroxybenzoic acid was present mainly in the insoluble-bound form. The insoluble-bound fraction made a significant contribution to the reducing power and antiradical activity towards peroxyl radical. Furthermore, all extracts decreased the oxidative damage of human HuH-7 cells induced by peroxyl radicals, thus indicating their hepatoprotective potential. This study demonstrates that the antioxidant properties and bioactive potential of insoluble-bound phenolics of chickpeas should not be neglected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA