Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Heliyon ; 10(11): e31856, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868061

RESUMEN

The incorporation of different amounts of Gum Arabic (GA) in thermoplastic starch (TPS) obtained by extrusion and subsequent thermocompression has been studied. The sheets have been characterized by means of XRD, FTIR, TGA, moisture content, SEM, mechanical properties, antimicrobial activity and biodegradability via composting. The FTIR analysis of the sheets shows the presence of ester groups, while the TGA shows the presence of new processes and a residue much higher than expected is obtained. No changes in crystallinity are observed by XRD. The inclusion of GA confers antimicrobial properties to thermoplastic starch against the Gram + and Gram - bacteria studied even at the smaller concentrations. For a low GA content (0.5 and 1 g GA/100 g TPS) a homogeneous material is observed by SEM, as well as an important increase in tensile strength, modulus and deformation at break, which are very interesting properties facing the applicability of this material in single use plastics which are in contact with food or other consumable goods. At higher contents of GA, hollows and cracks appear in the material, compromising the mechanical properties. In all cases, the inclusion of GA delays the biodegradation process in soil, which can be related to its antibacterial capacity and especially in case of GA concentrations of 2 and 5 g/100 g of TPS with lower humidity of these TPS sheets.

2.
Sci Total Environ ; 929: 172757, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670364

RESUMEN

To mitigate the environmental impact of microplastics (MPs), the scientific community has innovated sustainable and biodegradable polymers as viable alternatives to traditional plastics. Chitosan, the deacetylated form of chitin, stands as one of the most thoroughly investigated biopolymers and has garnered significant interest due to its versatile applications in both medical and cosmetic fields. Nevertheless, there is still a knowledge gap regarding the impact that chitosan biopolymer films (CBPF) may generate in aquatic organisms. In light of the foregoing, this study aimed to assess and compare the potential effects of CBPF on the gastrointestinal tract, gills, brain, and liver of Danio rerio against those induced by MPs. The findings revealed that both CBPF and MPs induced changes in the levels of oxidative stress biomarkers across all organs. However, it is essential to note that our star plots illustrate a tendency for CBPF to activate antioxidant enzymes and for MPs to produce oxidative damage. Regarding gene expression, our findings indicate that MPs led to an up-regulation in the expression of genes associated with apoptotic response (p53, casp3, cas9, bax, and bcl2) in all fish organs. Meanwhile, CBPF produced the same effect in genes related to antioxidant response (nrf1 and nrf2). Overall, our histological observations substantiated these effects, revealing the presence of plastic particles and tissue alterations in the gills and gastrointestinal tract of fish subjected to MPs. From these results, it can be concluded that CBPF does not represent a risk to fish after long exposure.


Asunto(s)
Quitosano , Microplásticos , Estrés Oxidativo , Poliestirenos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Quitosano/química , Estrés Oxidativo/efectos de los fármacos , Poliestirenos/toxicidad , Biopolímeros , Ecotoxicología
3.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177021

RESUMEN

In this study, we set out to modify poly(lactic acid) (PLA) by incorporating epoxidized ionic liquids (ILs) that were specifically designed with imidazolium-NTf2 moieties. First, we synthesized di-, tri- and tetra-epoxidized ILs, which were incorporated into a PLA matrix at 3, 5, and 10 wt% through a melt extrusion process. We investigated the relationship between the structure and properties of the resulting materials in terms of thermal, mechanical, rheological, and surface properties. The results showed the potential of ILs to impact these properties. Notably, the tri- and tetra-epoxidized ILs enhanced the thermal stability of the PLA matrix as well as the crystallinity while reducing the glass transition temperature and melting point, which is promising for reactive extrusion processing. Overall, this research opens new routes for using reactive ILs to improve the processing and properties of PLA polymers.

4.
Materials (Basel) ; 16(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37109836

RESUMEN

The dressings are materials that can improve the wound-healing process in patients with medical issues. Polymeric films are frequently used as dressings with multiple biological properties. Chitosan and gelatin are the most used polymers in tissue regeneration processes. There are usually several configurations of films for dressings, among which the composite (mixture of two or more materials) and layered ones stand out (layers). This study analyzed the antibacterial, degradable, and biocompatible properties of chitosan and gelatin films in 2 configurations, composite and bilayer, composite. In addition, a silver coating was added to enhance the antibacterial properties of both configurations. After the study, it was found that the bilayer films have a higher antibacterial activity than the composite films, having inhibition halos between 23% and 78% in Gram-negative bacteria. In addition, the bilayer films increased the fibroblast cell proliferation process, reaching up to 192% cell viability after 48 h of incubation. On the other hand, composite films have greater stability since they are thicker, with 276 µm, 243.8 µm, and 239 µm compared to 236 µm, 233 µm, and 219 µm thick for bilayer films; and a low degradation rate compared to bilayer films.

5.
J Microencapsul ; 40(2): 67-81, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36722704

RESUMEN

The objectives of this work are to develop nanocarrier systems for the Ru(II)-p-cymene naproxen antitumor metallodrug, [Ru(η6-p-cymene)(npx)Cl] or Rupcy, based on polymeric nanoparticles (NPs) composed by the biodegradable poly(lactic acid) (PLA) and the hydrophilic polymerised ß-cyclodextrin (PolyCD); to validate an analytical method for determination of Ru incorporated into the metallodrug loaded-NPs. The PolyCD was prepared by single step condensation and polymerisation reaction and incorporated as a polymer blend during the fabrication of PLA/PolyCD blends NPs and also as a core/shell structure built by adsorption of the PolyCD onto the surface of PLA NPs to give PLA(core)/PolyCD(shell) NPs. Three different loaded-systems incorporating the metallodrug (Rupcy-PLA NPs (1), Rupcy-PLA/PolyCD blends (2), and Rupcy-PLA(core)/PolyCD(shell) NPs (3)) were prepared by nanoprecipitation. The characterisation was performed by Proton Nuclear Magnetic Resonance, Matrix Assisted Laser Desorption/Ionization Time-of-Flight, Fourier-Transform Infra-red and UV-VIS Electronic Absorption Spectroscopies, Thermogravimetric Analysis, Differential Scanning Calorimetry, Dynamic Light Scattering, and Electrophoretic Light Scattering. Ru was determined by Microwave Induced Plasma Optical Emission Spectrometry (MIP-OES) with validation of the method. The metallodrug entrapment efficiency was around 90% (w/w) and drug loading was at 3-4% (w/w). The characterised metallodrug-loaded systems exhibited monomodal size distributions and appropriate hydrodynamic diameters [218.3 ± 13.5 (1), 205.4 ± 14.4 (2), 231.5 ± 22.0 (3) nm] and zeta potential values [-31.5 ± 2.2 (1), -26.1 ± 4.5 (2), -28.8 ± 6.1 (3) mV]. The validation of the MIP-OES method by evaluating selectivity, linearity, precision, accuracy, and limits of detection and quantification succeeded. The NPs parameters are compatible with colloidally stable systems. The MIP-OES method showed to be simple, reliable, and feasible to quantify indirectly the amount of the metallodrug-loaded into the PLA NPs.


Asunto(s)
Nanopartículas , Rutenio , Naproxeno , Microondas , Poliésteres/química , Polímeros/química , Nanopartículas/química , Análisis Espectral , Tamaño de la Partícula , Portadores de Fármacos/química
6.
Molecules ; 27(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500442

RESUMEN

Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.


Asunto(s)
Petróleo , Polihidroxialcanoatos , Biopolímeros , Sistemas de Liberación de Medicamentos , Embalaje de Alimentos
7.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956691

RESUMEN

Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.

8.
Materials (Basel) ; 15(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207816

RESUMEN

Packaging materials based on biodegradable polymers are a viable alternative to replace conventional plastic packaging from fossil origin. The type of plasticizer used in these materials affects their functionality and performance. The effect of different plasticizers such as glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in concentrations of 5%, 10%, and 15% (w/w) on the structural features and functional properties of starch/PVOH/chitosan films was evaluated. The incorporation of a plasticizer increased the thickness of the biodegradable composite films. Furthermore, the material plasticized with 30% (w/w) sorbitol had the highest elongation at break, lowest water vapor permeability, and better thermal resistance. The results obtained in this study suggest that maize starch/PVOH/chitosan biodegradable composite films are a promising packaging material, and that sorbitol is the most suitable plasticizer for this formulation.

9.
Molecules ; 26(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34771143

RESUMEN

The preparation and characterization of biodegradable films based on starch-PVA-nanoclay by solvent casting are reported in this study. The films were prepared with a relation of 3:2 of starch:PVA and nanoclay (0.5, 1.0, and 1.5% w/v), and glycerol as plasticizer. The nanoclays before being incorporated in the filmogenic solution of starch-PVA were dispersed in two ways: by magnetic stirring and by sonication. The SEM results suggest that the sonication of nanoclay is necessary to reach a good dispersion along the polymeric matrix. FTIR results of films with 1.0 and 1.5% w/v of sonicated nanoclay suggest a strong interaction of hydrogen bond with the polymeric matrix of starch-PVA. However, the properties of WVP, tensile strength, percentage of elongation at break, and Young's modulus improved to the film with sonicated nanoclay at 0.5% w/v, while in films with 1.0 and 1.5% w/w these properties were even worse than in film without nanoclay. Nanoclay concentrations higher than 1.0 w/v saturate the polymer matrix, affecting the physicochemical properties. Accordingly, the successful incorporation of nanoclays at 0.5% w/v into the matrix starch-PVA suggests that this film is a good candidate for use as biodegradable packaging.


Asunto(s)
Arcilla/química , Nanocompuestos/química , Alcohol Polivinílico/química , Imagen Óptica , Agua/química
10.
Plant Foods Hum Nutr ; 76(4): 507-515, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716887

RESUMEN

Here, we presented new insights of the development of poly(lactic-co-glycolic acid) nanoparticles containing turmeric compounds (turmeric-PLGA-NPs) using emulsion-solvent evaporation method. The nanoparticulate system was characterized by size, zeta potential, morphology, release profile, partition parameter, stability and encapsulation efficiency (%EE). Antioxidant activity studies were also evaluated. The Korsmeyer-Peppas model (Mt/M∞ vs. t) was used to determine the release mechanisms of the studied system. Our results demonstrated the emulsion-solvent evaporation method was shown advantageous for producing turmeric-PLGA-NPs in the range of 145 nm with high homogeneity in size distribution, zeta potential of -21.8 mV and %EE about 72%. Nanoparticles were stable over a period of one month. In vitro study showed a release of curcumin governed by diffusion and relaxation of the polymeric matrix. The partition parameter of the extract in relation to blank-PLGA-NPs was 0.111 ± 0.008 M-1, indicating a low affinity of curcumin for the polymer matrix. Antioxidant ability of the turmeric-PLGA-NPs in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) was inferior to free turmeric extract and showed a concentration and time-dependent profile. The study concluded that PLGA nanoparticles are potential carriers for turmeric extract delivery.


Asunto(s)
Antioxidantes , Nanopartículas , Antioxidantes/farmacología , Curcuma , Tamaño de la Partícula , Extractos Vegetales/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
11.
Food Chem ; 360: 129966, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33993071

RESUMEN

Spectroscopies analysis indicated that kefiran contains branched hexasaccharide repeating units. Neat kefiran films, 2 and 5% w/w of glycerol, d-glucitol, d-galactitol, d-mannitol, and d-limonene were incorporated as plasticizers. Neat and plasticized kefiran films were characterized by physical, thermal, mechanical, optical, and water solubilization properties. Neat kefiran had a glass transition temperature (Tg) of -20 ± 2 °C and, with the addition of plasticizers between -15 to -17 ± 2 °C. The values were close to the neat kefiran, and the results could be attributed to a lower amount of plasticizer used. The solubility of the glycerol plasticized films increases by 33% and decreased with the concentration of other plasticizers in comparison with the neat kefiran. d-glucitol and d-galactitol decreased the microhardness and Young's Modulus of films around 30% and 74% respectively, obtaining more flexible kefiran films. Kefiran based films could find applications as potential materials in the food-packaging industry.


Asunto(s)
Embalaje de Alimentos/métodos , Fenómenos Físicos , Plastificantes/química , Polisacáridos/química , Módulo de Elasticidad , Permeabilidad , Solubilidad , Temperatura , Resistencia a la Tracción , Agua/química
12.
Rev. colomb. quím. (Bogotá) ; 50(1): 20-39, ene.-abr. 2021. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1289322

RESUMEN

Resumen En términos generales, es bien conocida la cualidad que poseen algunos polímeros de cambiar sus propiedades físicas y químicas finales mediante la adición de nanopartículas a la matriz polimérica para producir un material compuesto (MC). Esta investigación está basada en la obtención de un MC a partir de ácido poliláctico (PLA) y nanotubos de carbono de pared múltiple (NTCPM), muy empleado en la industria del envasado y dispositivos biomédicos, con el fin de ampliar su perfil industrial. Se desarrollaron cuatro mezclas de PLA y NTCPM, y se empleó polietilenglicol (PEG) como plastificante. Se evaluaron sus propiedades morfológicas, térmicas, mecánicas, termo-mecánicas, espectroscópicas, ángulo de contacto y cristalográficas. Se observó que los MCs presentaron degradación térmica a temperaturas inferiores a la matriz sin NTCPM, así como un aumento en el módulo de flexión y tensión en algunas de las muestras. Así mismo, se observó que los NTCPM pueden aumentar la cristalinidad del material y que, en algunos casos, se incrementa su rigidez, actuando como un aditivo útil para aplicaciones de mayor esfuerzo mecánico que la matriz. Del efecto de agregar PEG en los MC, se determinó que los NTCPM no restringen la movilidad de las cadenas poliméricas y se da un efecto plastificante, lo que permite mayor movilidad de la zona amorfa de las cadenas de polímero, como indica la literatura consultada. Finalmente, se concluyó que a mayores contenidos de NTCPM, se generan mejores valores en el módulo de flexión, esfuerzo máximo de flexión, módulo de elongación, esfuerzo de carga máxima y esfuerzo de ruptura, entre otras propiedades evaluadas.


Abstract The quality of some polymers to change their final physical and chemical properties by adding nanoparticles to the polymer matrix to produce a composite material (MC) is well known. This research is based on obtaining a MC from polylactic acid (PLA) and multi-walled carbon nanotubes (CNTMW), widely used in the packaging industry and biomedical devices, in order to expand its industrial profile. Four mixtures of PLA and CNTMW were developed, and polyethylene glycol (PEG) was used as a plasticizer. Their morphological, thermal, mechanical, thermo-mechanical, spectroscopic, contact angle, and crystallographic properties were evaluated. It was observed that the composites showed thermal degradation at temperatures below the matrix without CNTMW, as well as an increase in the modulus of flexion and tension in some of the samples. Likewise, it was observed that the CNTMW can increase the crystallinity of the material and that, in some cases, its rigidity is increased, acting as a useful additive for applications of greater mechanical stress than the matrix. From the effect of adding PEG in the composites, the CNTMW do not restrict the mobility of the polymer chains and a plasticizing effect occurs, which allows greater mobility of the amorphous zone of the polymer chains. In general terms, it was concluded that at higher CNTMW contents, better values were generated in the flexural modulus, maximum flexural stress, elongation modulus, maximum load stress and rupture stress, among other evaluated properties.


Resumo Alguns polímeros têm a propriedade de alterar suas propriedades físicas e químicas finais, adicionando nanopartículas à matriz polimérica para produzir um composto. Esta pesquisa baseia-se na obtenção de composto partir de ácido polilático (PLA) e nanotubos de carbono de paredes múltiplas (MWCNT), amplamente utilizado na indústria de embalagens e dispositivos biomédicos, a fim de expandir seu perfil industrial. Foram desenvolvidas quatro misturas de PLA e MWCNT e o polietilenoglicol (PEG) foi usado como plastificante. Foram avaliadas suas propriedades morfológicas, térmicas, mecânicas, termo-mecânicas, espectroscópicas, ângulo de contato e cristalográficas. Observou-se que os compostos apresentaram degradação térmica em temperaturas abaixo da matriz sem MWCNT, além de aumento no módulo de flexão e tensão em algumas das amostras. Da mesma forma, observou-se que o MWCNT pode aumentar a cristalinidade do material e que, em alguns casos, sua rigidez é aumentada, atuando como um aditivo útil para aplicações de maior tensão mecânica que a matriz. A partir do efeito da adição de PEG nos compostos, determinou-se que o MWCNT não restringe a mobilidade das cadeias poliméricas e ocorre um efeito plastificante, que permite maior mobilidade da zona amorfa das cadeias poliméricas. Em termos gerais, concluiu-se que, com maiores teores de MWCNT, melhores valores foram gerados no módulo de flexão, tensão máxima de flexão, módulo de alongamento, tensão de carga máxima e tensão de ruptura, entre outras propriedades avaliadas.

13.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546309

RESUMEN

Blueberries are highly appreciated for their high antioxidant content but are also particularly susceptible to fungal deterioration. In this work, corn starch and chitosan, byproducts of the fishing industry, as well as active compounds obtained from citrus processing waste were used to obtain active biodegradable film packaging. Blueberries were packed in corn starch-chitosan (CS:CH) films and in active films containing lemon essential oil (LEO) or grapefruit seed extract (GSE). The effects of film packaging on the quality parameters of berries and the fungal incidence of disease during storage were studied and compared to benchmark materials. A conservation assay simulating transport and commercialization conditions was conducted. Blueberries packed in CS:CH films showed antioxidant capacity values closer to those packed in commercial PET containers (Clamshells), preserving 84.8% of the initial antioxidants content. Fruit packed in LEO films exhibited the greatest weight loss and rot incidence, and poor surface color. CS:CH and GSE films controlled the fruit respiration rate and weight loss, therefore they are materials with adequate barrier properties for blueberries conservation. Bags formulated with GSE showed adequate barrier properties to maintain fruit quality attributes without the incidence of rottenness, being an interesting option for blueberries exportation.

14.
Polymers (Basel) ; 13(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429952

RESUMEN

Poly(itaconic acid) (PIA) was synthesized via conventional radical polymerization. Then, functionalization of PIA was carried out by an esterification reaction with the heterocyclic groups of 1,3-thiazole and posterior quaternization by N-alkylation reaction with iodomethane. The modifications were confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR), as well as ζ-potential measurements. Their antimicrobial activity was tested against different Gram-negative and Gram-positive bacteria. After characterization, the resulting polymers were incorporated into gelatin with oxidized starch and glycerol as film adjuvants, and dopamine as crosslinking agent, to develop antimicrobial-active films. The addition of quaternized polymers not only improved the mechanical properties of gelatin formulations, but also decreased the solution absorption capacity during the swelling process. However, the incorporation of synthesized polymers increased the deformation at break values and the water vapor permeability of films. The antioxidant capacity of films was confirmed by radical scavenging ability and, additionally, those films exhibited antimicrobial activity. Therefore, these films can be considered as good candidates for active packaging, ensuring a constant concentration of the active compound on the surface of the food, increasing products' shelf-life and reducing the environmental impact generated by plastics of petrochemical origin.

15.
Rev Port Cardiol (Engl Ed) ; 40(2): 71-76, 2021 Feb.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-33402278

RESUMEN

INTRODUCTION AND OBJECTIVES: The Stents Coated With the Biodegradable Polymer on Their Abluminal Faces and Elution of Sirolimus Versus Biolimus Elution for the Treatment of de Novo Coronary Lesions - DESTINY Trial is a non-inferiority randomized study that compared the Inspiron™ sirolimus-eluting stent (SES) with the control Biomatrix™ Flex biolimus-eluting stent (BES). Previous reports in the first year showed similar outcomes for both stents, in clinical, angiographic, optical coherence tomography, and intravascular ultrasound assessments. The present analysis aims to compare the clinical performance of these two biodegradable polymer drug-eluting stents five years after the index procedure. METHODS: A total of 170 patients (194 lesions) were randomized in a 2:1 ratio for treatment with SES or BES, respectively. The primary endpoint for the present study was the five-year rate of combined major adverse cardiac events, defined as cardiac death, myocardial infarction, or target lesion revascularization. RESULTS: At five years, the primary endpoint occurred in 12.5% and 17.9% of the SES and BES groups, respectively (p=0.4). There was no definite or probable stent thrombosis among patients treated with the novel SES stent during the five years of follow-up, and no stent thrombosis after the first year in the BES group. CONCLUSIONS: The novel Inspiron™ stent had similar good clinical performance in long-term follow-up when compared head-to-head with the control latest-generation Biomatrix™ Flex biolimus-eluting stent.


Asunto(s)
Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Implantes Absorbibles , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Polímeros , Diseño de Prótesis , Resultado del Tratamiento
16.
Prep Biochem Biotechnol ; 51(6): 580-588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33135968

RESUMEN

The objective of the present work was to develop biodegradable polymeric films (starch-PBAT) as support for the immobilization of lipases using sodium montmorillonite (MMT) as a reinforcing agent (2% w/w) and itaconic acid (IA - 0.5-1.5% w/w) as a compatibilizing agent. The films were produced through a two steps blow-extrusion. The addition of MMT increased the tensile strength and Tg of the films, while the presence of IA made the films more flexible, reducing their Tg. Lipases from Burkholderia cepacia LTEB11 were immobilized in the films by the adsorption method. The ester yield (% of ethyl oleate synthesis) has shown best results (96%, 6 h) for immobilized enzyme in the MMT film and six cycles of reuse were carried out until a reduction of 50% in the catalytic activity of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Bentonita/química , Burkholderia cepacia/enzimología , Enzimas Inmovilizadas/química , Lipasa/química , Poliésteres/química , Almidón/química , Succinatos/química
17.
Photodiagnosis Photodyn Ther ; 32: 101957, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32818649

RESUMEN

Candidiasis is one of the most common diseases that occur in the oral cavity, caused mainly by the species Candida albicans. Methylene blue (MB) has a potential for microbial photoinactivation and can cause the destruction of fungi when applied in Photodynamic Therapy (PDT). Mucoadhesive films are increasingly being studied as a platform for drug application due to their advantages when compared to other pharmaceutical forms. The aim of this work was to develop mucoadhesive buccal film containing poloxamer 407 (P407), alcohol polyvinyl (PVA) and polyvinylpyrrolidone (PVP) for the release of MB aiming the photoinactivation of Candida albicans in buccal infections. Different amounts of P407 were added to the binary polymeric blends composed PVA and PVP. Formulations were characterized as morphology, thickness, density, bending strength, mechanical properties, water vapor transmission, disintegration time, mucoadhesion, DSC, ATR-FTIR, in vitro drug release profile and photodynamic inactivation. The films displayed physicochemical characteristics dependent of polymeric composition, mucoadhesive properties, fast MB release and were effective in photo inactivate the local growth of Candida albicans isolates. The formulation containing the lowest PVA and P407 amounts displayed the best performance. Therefore, data obtained from the film system show its potentially useful role as a platform for buccal MB delivery in photoinactivation of C. albicans, showing its potential for in vivo evaluation.


Asunto(s)
Candida albicans , Fotoquimioterapia , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Mucosa Bucal/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología
18.
Int J Biol Macromol ; 153: 625-632, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32165201

RESUMEN

This study aims to develop and characterize colorimetric indicator films based on chitosan, polyvinyl alcohol and anthocyanins from jambolan fruit (Syzygium cumini) prepared by casting method. The effect of anthocyanin extract on thickness, microstructure, moisture content, solubility in water, hydrophobicity, chemical structure, color and opacity of films was analyzed. In addition, anthocyanins photodegradation in films as well its application to monitoring shrimp freshness was studied. Significant effect (p < 0.05) of anthocyanin extract from jambolan fruit on the thickness and optical properties of the films was observed. Anthocyanin extract from jambolan fruit was efficiently incorporated and dispersed into film. The films containing anthocyanins showed visible changes from red color to blue color when used to monitor shrimp freshness at several temperatures (between -20 °C and 20 °C). This research reports for the first time information regarding the valorization and application of anthocyanins from jambolan fruit as an alternative for food packaging sector.


Asunto(s)
Antocianinas/química , Quitosano/química , Conservación de Alimentos , Frutas/química , Alcohol Polivinílico/química , Alimentos Marinos , Syzygium/química
19.
Polymers (Basel) ; 12(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963296

RESUMEN

The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive used.

20.
Polymers (Basel) ; 12(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906318

RESUMEN

Biocomposites were prepared from a ternary matrix of polylactic acid (PLA), polycaprolactone (PCL), and thermoplastic starch (TPS) and reinforced with native fique fibers from southwestern Colombia. The influence of surface modification by alkalization of fique fibers on the interfacial properties of the biocomposite was studied using pull-out tests. Additionally, the effect of short fique fibers in three proportions (10%, 20%, and 30% (w/w)) on the tensile mechanical properties of the composite was evaluated. The experimental results indicated that the interfacial shear strength (IFSS) of the ternary matrix was predominantly influenced by PCL and characterized by the development of a weak interface that failed due to matrix yielding. Furthermore, the incorporation of short fique fibers increased the elastic modulus of the composite to values similar to those estimated with the Tsai-Pagano model. The alkalization treatment of the fique fibers improved the interface with the composite matrix, and this phenomenon was evidenced by the results of the micromechanical and tensile characterizations of the composite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA