Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 748, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294613

RESUMEN

BACKGROUND: Osteoporosis is a major health concern for postmenopausal women, and the effect of simvastatin (Sim) on bone metabolism is controversial. This study aimed to investigate the effect of simvastatin on the bone microstructure and bone mechanical properties in ovariectomized (OVX) mice. METHODS: 24 female C57BL/6J mice (8-week-old) were randomly allocated into three groups including the OVX + Sim group, the OVX group and the control group. At 8 weeks after operation, the L4 vertebral bones were dissected completely for micro-Computed Tomography (micro-CT) scanning and micro-finite element analysis (µFEA). The differences between three groups were compared using ANOVA with a LSD correction, and the relationship between bone microstructure and mechanical properties was analyzed using linear regression. RESULTS: Bone volume fraction, trabecular number, connectivity density and trabecular tissue mineral density in the OVX + Sim group were significantly higher than those in the OVX group (P < 0.05). For the mechanical properties detected via µFEA, the OVX + Sim group had lower total deformation, equivalent elastic strain and equivalent stress compared to the OVX group (P < 0.05). In the three groups, the mechanical parameters were significantly correlated with bone volume fraction and trabecular bone mineral density. CONCLUSIONS: The findings suggested that simvastatin had a potential role in the treatment of osteoporosis. The results of this study could guide future research on simvastatin and support the development of simvastatin-based treatments to improve bone health.


Asunto(s)
Densidad Ósea , Análisis de Elementos Finitos , Ratones Endogámicos C57BL , Ovariectomía , Simvastatina , Microtomografía por Rayos X , Simvastatina/farmacología , Animales , Femenino , Ratones , Densidad Ósea/efectos de los fármacos , Osteoporosis/diagnóstico por imagen , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Modelos Animales de Enfermedad , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/diagnóstico por imagen , Fenómenos Biomecánicos/efectos de los fármacos
2.
Curr Osteoporos Rep ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276168

RESUMEN

PURPOSE OF REVIEW: This review synthesizes recent advancements in understanding subchondral bone (SCB) biomechanics using computed tomography (CT) and micro-computed tomography (micro-CT) imaging in large animal models, particularly horses. RECENT FINDINGS: Recent studies highlight the complexity of SCB biomechanics, revealing variability in density, microstructure, and biomechanical properties across the depth of SCB from the joint surface, as well as at different joint locations. Early SCB abnormalities have been identified as predictive markers for both osteoarthritis (OA) and stress fractures. The development of standing CT systems has improved the practicality and accuracy of live animal imaging, aiding early diagnosis of SCB pathologies. While imaging advancements have enhanced our understanding of SCB, further research is required to elucidate the underlying mechanisms of joint disease and articular surface failure. Combining imaging with mechanical testing, computational modelling, and artificial intelligence (AI) promises earlier detection and better management of joint disease. Future research should refine these modalities and integrate them into clinical practice to enhance joint health outcomes in veterinary and human medicine.

3.
Nutrients ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275197

RESUMEN

This study looked at how desalinated seawater, which has low minerals and high boron, could affect bone health. Prior research suggests that low mineral water may harm bone health and boron could be beneficial, but the overall impact on bone health is still unclear. Eighty-nine-week-old male Balb/C mice were allocated into eight groups and administered either tap water or purified water with varying boron concentrations (0, 5, 40, and 200 mg/L). They were kept in an environment mimicking tropical conditions (35-40 °C, 70-80% humidity) and underwent daily treadmill exercise for 13 weeks. At the 14th week, serum, femora, and lumbar vertebrae were collected for mineral metabolism, bone biomarker, microstructure, and biomechanics evaluation. Boron exposure improved bone formation, microstructure, and biomechanics initially but the benefits weakened with higher levels of exposure (p < 0.05). Co-exposure to purified water elevated serum boron but weakened the promotion of boron on bone minerals and the bone benefits of boron compared to tap water (p < 0.05). Thus, when studying the health effects of boron in desalinated seawater, it is crucial to look at various health effects beyond bone health. Furthermore, it is important to consider the mineral composition of drinking water when using boron for bone health benefits.


Asunto(s)
Huesos , Boro , Ratones Endogámicos BALB C , Aguas Minerales , Agua de Mar , Animales , Boro/farmacología , Masculino , Agua de Mar/química , Ratones , Huesos/efectos de los fármacos , Huesos/metabolismo , Densidad Ósea/efectos de los fármacos , Agua Potable , Biomarcadores/sangre , Vértebras Lumbares/efectos de los fármacos , Fémur/efectos de los fármacos
4.
BMC Musculoskelet Disord ; 25(1): 725, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256676

RESUMEN

BACKGROUND: Bisphosphonate (BP) can treat osteoporosis and prevent osteoporotic fractures in clinical. However, the effect of BP on microstructure and mechanical properties of cortical and trabecular bone has been taken little attention, separately. METHODS: In this study, BP was used to intervene in ovariectomized female SD rats. The femoral micro-CT images were used to measure the structural parameters and reconstruct the 3D models in volume of interest. The structural parameters of cortical and trabecular bone were measured, and the mechanical properties were predicted using micro-finite element analysis. RESULTS: There was almost no significant difference in the morphological structure parameters and mechanical properties of cortical bone between normal, ovariectomized (sham-OVX) and BP intervention groups. However, BP could significantly improve bone volume fraction (BV/TV) and trabecular separation (Tb.SP) in inter-femoral condyles (IT) (sham-OVX vs. BP, p < 0.001), and had no significant effect on BV/TV in medial and lateral femoral condyles (MT, LT). Similarly, BPs could significantly affect the effective modulus in IT (sham-OVX vs. BP, p < 0.001), and had no significant difference in MT and LT. In addition, the structural parameters and effective modulus showed a good linear correlation. CONCLUSION: In a short time, the effects of BP intervention and osteoporosis on cortical bone were not obvious. The effects of BP on trabecular bone in non-main weight-bearing area (IT) were valuable, while for osteoporosis, the main weight-bearing area (MT, LT) may improve the structural quality and mechanical strength of trabecular bone through exercise compensation.


Asunto(s)
Difosfonatos , Osteoporosis , Ovariectomía , Ratas Sprague-Dawley , Microtomografía por Rayos X , Animales , Femenino , Osteoporosis/tratamiento farmacológico , Osteoporosis/diagnóstico por imagen , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Ratas , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/fisiopatología , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Densidad Ósea/efectos de los fármacos , Análisis de Elementos Finitos
5.
J Bone Oncol ; 47: 100611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021590

RESUMEN

Introduction: Androgen Deprivation Therapy (ADT) for prostate cancer (PC) has substantial negative impacts on the musculoskeletal system and body composition. Many studies have focused on the effects of ADT on areal bone mineral density (aBMD), but aBMD does not capture key determinants of bone strength and fracture risk, for example volumetric bone density (vBMD), geometry, cortical thickness and porosity, trabecular parameters and rate of remodelling. More specialist imaging techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT) have become available to evaluate these parameters. Although it has previously been demonstrated that bone microarchitectural deterioration occurs in men undergoing ADT, the aim of the ANTELOPE study was to examine longitudinal changes in bone microstructure alongside a range of musculoskeletal parameters and frailty, comparing men with PC receiving ADT alone or ADT plus chemotherapy for metastatic disease, with a healthy age-matched population. Methods: We used HR-pQCT to investigate effects of 12 months of ADT on vBMD and microstructural parameters, complemented by assessment of changes in aBMD, serum bone turnover markers, sex hormones, body composition, grip strength, physical and muscle function, frailty and fracture risk. We studied three groups: Group A - men with localised/locally advanced PC due to commence ADT; Group B - men with newly diagnosed hormone-sensitive, metastatic PC, starting ADT alongside docetaxel chemotherapy and steroids; Group C - healthy, age-matched men. The primary endpoint was change in vBMD (Group A vs Group C) at the distal radius. Results: Ninety-nine participants underwent baseline study assessments (Group A: n = 38, Group B: n = 30 and Group C: n = 31). Seventy-five participants completed all study assessments (Group A (29), Group B (18), Group C (28). At baseline, there were no significant differences between Groups A and C in any of the BMD or bone microstructure outcomes of interest. After 12 months of ADT treatment, there was a significantly greater decrease in vBMD (p < 0.001) in Group A (mean 12-month change = -13.7 mg HA/cm3, -4.1 %) compared to Group C (mean 12-month change = -1.3 mg HA/cm3, -0.4 %), demonstrating achievement of primary outcome. Similar effects were observed when comparing the change in vBMD between Group B (mean 12-month change = -13.5 mg HA/cm3, -4.3 %) and Group C. These changes were mirrored in aBMD. ADT resulted in microstructural deterioration, a reduction in estimated bone strength and an increase in bone turnover. There was evidence of increase in total fat mass and trunkal fat mass in ADT-treated patients, with marked loss in upper limb mass, along with BMI gain. Frailty increased and physical performance and strength deteriorated in both ADT groups, relative to the healthy control group. Conclusion: The study showed that ADT has profound effects on vBMD, aBMD, bone microstructure and strength and body composition, and important impacts on frailty and physical performance. Whilst DXA remains a valuable tool (changes in aBMD are of the same magnitude as those observed for vBMD), HR-pQCT should be considered for assessing the effects of anti-androgens and other newer PC therapies on bone, as well as potential mitigation by bone-targeted agents.

6.
J Bone Miner Metab ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028336

RESUMEN

INTRODUCTION: Chemotherapy involves the administration of steroids to prevent nausea and vomiting; however, its effect on bone microstructure remains unknown. This study aimed to evaluate the changes in bone mineral density (BMD) and bone microstructure associated with chemotherapy using high-resolution peripheral quantitative computed tomography (HR-pQCT) in women with early breast cancer. MATERIALS AND METHODS: This prospective single-arm observational study included non-osteoporotic, postmenopausal women with breast cancer. The patients underwent dual-energy X-ray absorptiometry (DXA), HR-pQCT, and tartrate-resistant acid phosphatase-5b (TRACP-5b) or procollagen type-I N-terminal propeptide (P1NP) measurements at baseline, end of chemotherapy, and 6 months after chemotherapy. The primary endpoint was the change in total volumetric BMD at the distal tibia and radius. RESULTS: Eighteen women were included in the study (median age: 57 years; range: 55-62 years). At 6 months after chemotherapy, HR-pQCT indicated a significant decrease in total volumetric BMD (median: distal tibia -4.5%, p < 0.01; distal radius -2.3%, p < 0.01), cortical volumetric BMD (-1.9%, p < 0.01; -0.8%, p = 0.07, respectively), and trabecular volumetric BMD (-1.1%, p = 0.09; -3.0%, p < 0.01, respectively). The DXA BMD also showed a significant decrease in the lumbar spine (median: -4.5%, p < 0.01), total hip (-5.5%, p < 0.01), and femoral neck (-4.2%, p < 0.01). TRACP-5b and P1NP levels were significantly increased at the end of chemotherapy compared to baseline. CONCLUSION: Postmenopausal women undergoing chemotherapy for early breast cancer experienced significant BMD deterioration in weight-bearing bone, which was further reduced 6 months after chemotherapy.

7.
Comput Biol Med ; 180: 108929, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068904

RESUMEN

The bone microstructure of the human proximal femur is clinically crucial for diagnosing skeletal pathologies, such as osteoporosis and bone metastases. The topology optimization-based bone microstructure method obtains these bone microstructures by converting low-resolution (LR) images into high-resolution images. However, this method is inherently computationally inefficient as it requires numerous finite elements, iterative analyses, and parallel computations. Therefore, this study proposes a novel topology optimization-based localised bone microstructure reconstruction method using the dominant load, which highly affects the selected region of interest (ROI), for efficient resolution enhancement. The load dependency of selected ROIs is quantified with a load dependency score. Then, the localised finite element model is constructed based on the local load estimation. Finally, the selected dominant load is applied as an input for the topology optimization-based bone microstructure reconstruction method. The reconstructed bone microstructure was similar to that of the conventional method. The localised finite element model applied by the dominant load effectively and accurately reconstructed the bone morphology and exhibited high computational efficiency. In conclusion, the dominant load-based approach can be used to construct a reasonable trabecular bone structure for ROI with high computational efficiency. The predictive performance of the proposed method was validated and showed promise for accurate trabecular bone structure prediction without additional radiation exposure.


Asunto(s)
Fémur , Análisis de Elementos Finitos , Humanos , Fémur/diagnóstico por imagen , Masculino , Femenino
8.
J Funct Biomater ; 15(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38667544

RESUMEN

This study investigates the viscoelastic deformation mechanisms of bone as a response to Vickers hardness indentation. We utilized advanced high-resolution scanning electron microscopy (SEM) to investigate a distinct deformation pattern that originates from the indentation site within the bone matrix. The focus of our research was to analyze a unique deformation mechanism observed in bone tissue, which has been colloquially termed as "screw-like" due to its resemblance to a screw thread when viewed under an optical microscope. The primary goals of this research are to investigate the distinctive characteristics of the "screw-like" deformation pattern and to determine how the microstructure of bone influences the initiation and control of this mechanism. These patterns, emerging during the dwell period of indentation, underscore the viscoelastic nature of bone, indicating its propensity for energy dissipation and microstructural reconfiguration under load. This study uncovered a direct correlation between the length of the "screw-like" deformation and the duration of the indentation dwell time, providing quantifiable evidence of the bone's viscoelastic behavior. This finding is pivotal in understanding the mechanical properties of bone, including its fracture toughness, as it relates to the complex interplay of factors such as energy dissipation, microstructural reinforcement, and stress distribution. Furthermore, this study discusses the implications of viscoelastic properties on the bone's ability to resist mechanical challenges, underscoring the significance of viscoelasticity in bone research.

9.
Anat Rec (Hoboken) ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655735

RESUMEN

Archosauria originated around the Earth's largest biotic crisis that severely affected all ecosystems globally, the Permotriassic Mass extinction event, and comprises two crown-group lineages: the bird-lineage and the crocodylian lineage. The bird lineage includes the iconic pterosaurs, as well as dinosaurs and birds, whereas the crocodylian lineage includes clades such as aetosaurs, poposaurs, "rauisuchians," as well as Crocodylomorpha; the latter being represented today only by less than 30 extant species of Crocodylia. Despite playing important roles during Mesozoic and Cenozoic ecosystems, both on land and in water, Pseudosuchia received far less attention compared to the bird-lineage, which is also reflected in number and scope of histological studies so far. Lately, the field has seen a shift of focus toward pseudosuchians, however, and the symposium on "Paleohistological Inferences of Paleobiological Traits in Pseudosuchia" held during the International Congress of Vertebrate Morphology 2023 in Cairns, Queensland, Australia, is the latest proof of that. To put these novel aspects of paleohistological and paleobiological research into context, an overview of the non-extant pseudosuchian taxa whose postcranial bones were studied so far is provided here (c. 80 species out of a total of more than 700 extinct species described) and recent trends in pseudosuchian osteohistology are highlighted. In addition, histological studies on cranial and dental material and other potential hard tissues, such as eggshells and otoliths, are briefly reviewed as well.

10.
Molecules ; 29(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474436

RESUMEN

Diabetic osteoporosis (DOP) is an abnormal metabolic disease caused by long-term hyperglycemia. In this study, a model rat of streptozotocin (STZ)-induced diabetes was established, and chromium picolinate (5 mg·kg-1) was given; the changes in blood glucose and body weight were detected before and after administration; and bone mineral density (BMD), bone morphology, bone turnover markers, inflammatory cytokines, and oxidative stress indicators were observed in each group. We found that after chromium picolinate (CP) intervention for 8 weeks, the blood glucose level was decreased; the BMD, the bone histomorphology parameters, and the pathological structure were improved; the expression of bone resorption-related proteins was downregulated; and the expression of bone formation-related proteins was upregulated. Meanwhile, serum antioxidant activity was increased, and inflammatory cytokine levels were decreased. In conclusion, CP could alleviate DOP by anti-oxidation, inhibition of bone turnover, anti-inflammation, and regulation of the OPG/RANKL/RANK signaling pathway. Therefore, CP has important application values for further development as a functional food or active medicine in DOP treatment.


Asunto(s)
Enfermedades Óseas Metabólicas , Diabetes Mellitus Experimental , Osteoporosis , Ácidos Picolínicos , Ratas , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Densidad Ósea , Osteoporosis/metabolismo , Ligando RANK
11.
Bone ; 183: 117077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521234

RESUMEN

PURPOSE: Human evidence on the association between oxidative stress and osteoporosis is inconsistent. Fluorescent Oxidation Products (FlOPs) are global biomarkers of oxidative stress. We examined the associations of FlOPs (excitation/emission wavelengths 320/420 nm for FlOP_320, 360/420 nm for FlOP_360, and 400/475 nm for FlOP_400) with osteoporosis, bone microstructure, and bone turnover markers in humans and rats. METHODS: In humans, we conducted a 1:2 age, sex, hospital, and specimen-matched case-control study to test the association between FlOPs and osteoporosis diagnosed from dual-energy X-ray absorptiometry. In eight-week-old male Wistar rats, we administrated D-galactose and 0.9 % saline for 90 days in treatment and control groups (n = 8/group); micro-CT was used to determine bone microstructure. RESULTS: In humans, higher levels of FlOP_320 (OR for per 1 SD increase = 1.49, 95 % CI: 1.01-2.20) and FlOP_360 (OR for per 1 SD increase = 1.59, 95 % CI: 1.07-2.37) were associated with increased odds of osteoporosis. FlOP_400 were not associated with osteoporosis. D-galactose treated rats, as compared with control rats, showed higher levels of FlOP_320 and MDA, and lower P1NP levels during 90 days of experiment (all P < 0.05). The D-galactose group had lower trabecular bone volume fraction (0.07 ± 0.03 vs. 0.13 ± 0.05; P = 0.008) and volumetric BMD (225.4 ± 13.8 vs. 279.1 ± 33.2 mg HA/cm3; P = 0.001) than the control group. CONCLUSION: In conclusion, higher FlOP_320 levels were associated with increased odds of osteoporosis, impaired bone microstructure and decreased bone formation.


Asunto(s)
Galactosa , Osteoporosis , Humanos , Masculino , Ratas , Animales , Estudios de Casos y Controles , Ratas Wistar , Estrés Oxidativo , Remodelación Ósea , Biomarcadores , Densidad Ósea
12.
J Musculoskelet Neuronal Interact ; 24(1): 22-30, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427365

RESUMEN

OBJECTIVES: This study aimed to determine whether mechanical stress via muscle contractile exercise with belt electrode-skeletal muscle electrical stimulation (B-SES) device effectively prevents immobilization-induced bone atrophy. METHODS: Wistar rats were randomly divided into the control (CON) group, immobilization (IM) group (immobilized treatment only), HES and LES groups (immobilized treatment and high or low-intensity electrical muscular stimulation through B-SES device). Bilateral femurs were used for X-ray micro-CT and biomechanical tests. RESULTS: The maximum load value was significantly lower in the IM and HES groups than in the CON group and significantly higher in the LES group than in the IM group. The maximum crushing load was significantly lower in the IM, HES, and LES groups than in the CON group, and significantly higher in the HES and LES groups than that in the IM group. In micro-CT, the mechanical stress by B-SES device did not affect degenerative microstructural changes in the cortical bone, but prevented those changes in the cancellous bone. CONCLUSIONS: Applying mechanical stress via B-SES device suppressed the loss of cancellous bone density and degenerative microstructural changes caused by immobilization, which in turn suppressed the reduction of bone strength. From these findings, muscle contractile exercise may be effective in preventing immobilization-induced bone atrophy.


Asunto(s)
Huesos , Músculo Esquelético , Ratas , Animales , Estrés Mecánico , Ratas Wistar , Músculo Esquelético/fisiología , Atrofia , Inmovilización
13.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399361

RESUMEN

Tenofovir disoproxil fumarate (TDF) is a widely used pharmacological agent for the treatment of human immunodeficiency virus infection. While prolonged exposure to TDF has been associated with a decrease in bone mineral density (BMD) and increased fracture risk, limited discussion exists on its effects on various aspects of bone quality. This scoping review aims to provide a comprehensive overview of the impact of TDF on bone quality beyond BMD. A literature search was conducted using the PubMed and Scopus databases to identify studies investigating the effects of TDF on bone quality. Original research articles written in English, irrespective of study type or publication year, were included in the review. Seven articles met the inclusion criteria. Findings indicate that prolonged exposure to TDF adversely affects bone microarchitecture and strength, impeding fracture healing and skeletal microdamage repair. The observed effects suggest a complex interplay involving bone cell signalling, cytokines and bone remodelling processes as potential mechanisms underlying TDF's impact on bone quality. As a conclusion, TDF impairs bone remodelling and microarchitecture by influencing dynamic bone cell behaviour and signalling pathways. Future studies should delve deeper into understanding the intricate negative effects of TDF on bone and explore strategies for reversing these effects.

14.
J Sci Food Agric ; 104(9): 5052-5063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38284744

RESUMEN

BACKGROUND: Postmenopausal osteoporosis (PMO) is associated with dysregulation of bone metabolism and gut microbiota. Quinoa is a grain with high nutritional value, and its effects and potential mechanisms on PMO have not been reported yet. Therefore, the purpose of this study is to investigate the bone protective effect of quinoa on ovariectomy (OVX) rats by regulating bone metabolism and gut microbiota. RESULTS: Quinoa significantly improved osteoporosis-related biochemical parameters of OVX rats and ameliorated ovariectomy-induced bone density reduction and trabecular structure damage. Quinoa intervention may repair the intestinal barrier by upregulating the expression of tight junction proteins in the duodenum. In addition, quinoa increased the levels of Firmicutes, and decreased the levels of Bacteroidetes and Prevotella, reversing the dysregulation of the gut microbiota. This may be related to estrogen signaling pathway, secondary and primary bile acid biosynthesis, benzoate degradation, synthesis and degradation of ketone bodies, NOD-like receptor signaling pathway and biosynthesis of tropane, piperidine and pyridine alkaloids. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and parameters related to osteoporosis. CONCLUSION: Quinoa could significantly reverse the high intestinal permeability and change the composition of gut microbiota in OVX rats, thereby improving bone microstructure deterioration and bone metabolism disorder, and ultimately protecting the bone loss of OVX rats. © 2024 Society of Chemical Industry.


Asunto(s)
Densidad Ósea , Chenopodium quinoa , Microbioma Gastrointestinal , Ovariectomía , Ratas Sprague-Dawley , Animales , Ratas , Femenino , Chenopodium quinoa/química , Densidad Ósea/efectos de los fármacos , Humanos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Osteoporosis/metabolismo , Osteoporosis/prevención & control , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/prevención & control , Osteoporosis Posmenopáusica/microbiología
15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1028632

RESUMEN

Long-term burden of illness and associated medication usage make osteoporosis(OP) a common complication of respiratory diseases. The pathogenic risk factors and treatment strategies for respiratory diseases related OP are similar to primary OP. However, due to differences in the pathogenesis of each disease, there are distinctions in the characteristics of bone loss and treatment approaches. Therefore, targeted diagnostic and therapeutic plans need to be formulated. This article provides a comprehensive review of secondary OP caused by common respiratory diseases in terms of epidemiological characteristics, related risk factors or possible mechanisms, changes in bone metabolic indexes or characteristics of bone damage, and progress in diagnosis and treatment. The aim of this review is to offer insights into the prevention and treatment of secondary OP related to respiratory diseases and promote the development of a multidisciplinary collaborative approach.

16.
Poult Sci ; 103(2): 103267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113706

RESUMEN

This study evaluated the effects of 25-hydroxycholecalciferol (25-OHD) on performance, gut health, and bone quality of broilers fed with reduced calcium (Ca) and phosphorus (P) diet during Eimeria spp. challenge. A total of 576 fourteen-day-old Cobb 500 male chicks were randomly distributed in a 2 × 2 × 2 factorial arrangement, with 6 replicates of 12 birds each. The main factors were 25-OHD level (0 or 3,000 IU/kg of feed), mineral level (0.84% of Ca/0.42% of P, the levels recommended for the grower phase (NOR) or 0.64% of Ca/0.22% of P (RED), and mid-high mixed Eimeria challenge or nonchallenge. 25-OHD improved phosphorus retention (P = 0.019), bone ash weight (P = 0.04), cortical bone trabecular connectivity (P = 0.043) during coccidiosis. For birds fed with reduced mineral levels, 25-OHD supplementation increased bone ash weight (P = 0.04). However, 25-OHD did not improve bone ash weight when birds were challenged and fed with reduced mineral levels. The dietary 3,000 IU of 25-OHD supplementation did not improve performance or gut morphology but support bone health during coccidiosis. Future investigations are needed for better understand 25-OHD role on bone microarchitecture and oxidative metabolism during coccidiosis.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Masculino , Pollos , Calcifediol/farmacología , Suplementos Dietéticos , Fósforo , Calcio , Dieta/veterinaria , Minerales , Coccidiosis/veterinaria , Alimentación Animal/análisis , Enfermedades de las Aves de Corral/metabolismo
17.
J Musculoskelet Neuronal Interact ; 23(4): 426-435, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037361

RESUMEN

OBJECTIVES: To examine effects of whole-body vibration (WBV) on bone properties in pre-type 2 diabetes mellitus (T2DM) rats. METHODS: Six-week-old male Hos:ZFDM-Lepr fa, fa/fa (DM) and Hos:ZFDM-Leprfa,fa/+ (CON; untreated non-DM) rats were used in the experiments. Half of DM rats were subjected to WBV (45 Hz, 0.5 g, 15 min/day, 5 days/week) for 8 weeks (WBV group), and the other half was not (DM group). RESULTS: Bone mass, trabecular bone microstructure (TBMS), and cortical bone geometry (CBG) parameters were worse in the DM and WBV groups compared with the CON group. Maximum load was significantly decreased in the DM group compared with the CON group, and the break point was significantly higher in the WBV group compared with the DM group. Serum levels of bone specific alkaline phosphatase were significantly lower in the WBV group compared with the CON group. Glycemic control was not worse in the WBV group compared with the DM group, but not the same levels as the CON group. CONCLUSIONS: These findings suggest that WBV can potentially delay the decrease in maximum load, although it does not prevent the deterioration of bone mass, TBMS, and CBG parameters.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vibración , Ratas , Masculino , Animales , Vibración/uso terapéutico , Huesos/diagnóstico por imagen , Densidad Ósea , Hueso Esponjoso
18.
3D Print Med ; 9(1): 32, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978094

RESUMEN

BACKGROUND: Bone health and fracture risk are known to be correlated with stiffness. Both micro-finite element analysis (µFEA) and mechanical testing of additive manufactured phantoms are useful approaches for estimating mechanical properties of trabecular bone-like structures. However, it is unclear if measurements from the two approaches are consistent. The purpose of this work is to evaluate the agreement between stiffness measurements obtained from mechanical testing of additive manufactured trabecular bone phantoms and µFEA modeling. Agreement between the two methods would suggest 3D printing is a viable method for validation of µFEA modeling. METHODS: A set of 20 lumbar vertebrae regions of interests were segmented and the corresponding trabecular bone phantoms were produced using selective laser sintering. The phantoms were mechanically tested in uniaxial compression to derive their stiffness values. The stiffness values were also derived from in silico simulation, where linear elastic µFEA was applied to simulate the same compression and boundary conditions. Bland-Altman analysis was used to evaluate agreement between the mechanical testing and µFEA simulation values. Additionally, we evaluated the fidelity of the 3D printed phantoms as well as the repeatability of the 3D printing and mechanical testing process. RESULTS: We observed good agreement between the mechanically tested stiffness and µFEA stiffness, with R2 of 0.84 and normalized root mean square deviation of 8.1%. We demonstrate that the overall trabecular bone structures are printed in high fidelity (Dice score of 0.97 (95% CI, [0.96,0.98]) and that mechanical testing is repeatable (coefficient of variation less than 5% for stiffness values from testing of duplicated phantoms). However, we noticed some defects in the resin microstructure of the 3D printed phantoms, which may account for the discrepancy between the stiffness values from simulation and mechanical testing. CONCLUSION: Overall, the level of agreement achieved between the mechanical stiffness and µFEA indicates that our µFEA methods may be acceptable for assessing bone mechanics of complex trabecular structures as part of an analysis of overall bone health.

19.
Poult Sci ; 102(11): 103044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717480

RESUMEN

Skeletal disorder is of concern to the poultry industry as it affects animal welfare and production performance. Traditional Chinese medicine could improve bone quality and reduce the incidence of bone disease, but the molecular regulation of Chinese medicine formula (CMF) on improving bone quality in broilers is still unclear. This study was performed to research the effects of CMF on skeletal performance of Cobb broilers and reveal the molecular regulation. A total of 120 one-day-old Cobb broilers were randomly allocated into 4 equal groups of 30 chickens, with 5 replicates and 6 chickens in each replicate. The control (CON) group was fed a diet without CMF, while the CMF1, CMF2, and CMF3 groups were supplemented with different CMF at 6,000 mg/kg diet, respectively. The broilers were raised to 60 d of age, then bone tissues were collected for biomechanical properties, micro-CT detection and transcriptomic sequencing analysis. The results showed that CMF3 improved the biomechanical properties of broiler tibia, via increasing the elastic modulus (P < 0.05), yield strength (P > 0.05), maximum stress (P < 0.05) and fracture stress (P < 0.05) of the tibia. Micro-CT analysis indicated that CMF3 increased the bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and decreased the trabecular separation (Tb.Sp) of femur cancellous bone (P < 0.05). RNA-seq analysis revealed 2,177 differentially expressed genes (DEGs) (|log2FoldChange| ≥ 1, FDR < 0.05) between the CMF3 group and CON group. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis showed 13 pathways mostly associated with bone growth and development and bone metabolism, and we identified 39 bone-related DEGs. This study suggests that CMF3 could improve bone strength and bone microstructure of broilers, and showed a positive effect on bone performance. Our research could provide a theoretical reference for the development of pollution-free feed additives to improve the skeletal performance of broilers, which could help promote healthy farming of chickens.

20.
Curr Osteoporos Rep ; 21(6): 825-841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707757

RESUMEN

PURPOSE OF REVIEW: To summarise the evidence regarding the effects of gender-affirming hormone therapy (GAHT) on bone health in transgender people, to identify key knowledge gaps and how these gaps can be addressed using preclinical rodent models. RECENT FINDINGS: Sex hormones play a critical role in bone physiology, yet there is a paucity of research regarding the effects of GAHT on bone microstructure and fracture risk in transgender individuals. The controlled clinical studies required to yield fracture data are unethical to conduct making clinically translatable preclinical research of the utmost importance. Novel genetic and surgical preclinical models have yielded significant mechanistic insight into the roles of sex steroids on skeletal integrity. Preclinical models of GAHT have the potential inform clinical approaches to preserve skeletal integrity and prevent fractures in transgender people undergoing GAHT. This review highlights the key considerations required to ensure the information gained from preclinical models of GAHT are informative.


Asunto(s)
Fracturas Óseas , Personas Transgénero , Humanos , Densidad Ósea , Hormonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA