Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 2): 133380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925192

RESUMEN

The widespread use of organic dyes in various industrial applications, driven by rapid industrialization, has become a significant environmental concern. Thus, highly efficient and reusable adsorbent for removal of pollutant dyes have gained increasing attention in water treatment. In this study, we present TiO2 nanoparticle-embedded mesoporous starch-based microparticle (TiO2@MSMP) with hierarchical rose-like structure were synthesis by using acetone precipitation of short-chain glucan (SCG) obtained from waxy maize starch. The resulting TiO2@MSMP exhibits an A-type crystalline polymorph and mean particle size of approximately 2 µm, displaying a type IV adsorption isotherm with a mean pore diameter of 19 nm and an average surface area of 12.34 m2/g. The adsorption ability of TiO2@MSMP towards methyl orange (MO) and crystal violet (CV) were 85.8 mg/g and 103.8 mg/g, respectively. The reusability of TiO2@MSMP was achieved by UV irradiation, which resulted in photodegradation of the adsorbed dye over 80 % while maintaining good absorption ability and structural stability during the recycling process. Given its cost-effectiveness, high adsorption capacity, and excellent reusability, TiO2@MSMP holds promise as an effective and environmentally friendly adsorbent with significant potential for removing dyes from aqueous solutions and purifying water.


Asunto(s)
Colorantes , Almidón , Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Titanio/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Colorantes/química , Colorantes/aislamiento & purificación , Almidón/química , Purificación del Agua/métodos , Porosidad , Agua/química , Solubilidad , Compuestos Azo/química , Compuestos Azo/aislamiento & purificación
2.
Foods ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928779

RESUMEN

Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.

3.
Food Chem ; 424: 136385, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37247597

RESUMEN

Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.


Asunto(s)
Catequina , Vitis , Vitis/química , Goma Arábiga/química , Triticum , Gliadina , Fenoles/análisis , Antioxidantes/análisis , Extractos Vegetales/química
4.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771784

RESUMEN

Piroxicam is a Biopharmaceutical Classification System (BCS) Class II drug having poor aqueous solubility and a short half-life. The rationale behind the present research was to develop a Piroxicam nanosuspension to enhance the solubility and thereby the in vitro bioavailability of the drug. Piroxicam nanosuspension (PRX NS) was prepared by an anti-solvent precipitation technique and optimized using a full-factorial design. Herein, the nanosuspension was prepared using polymer polyvinylpyrrolidone (PVP) K30® and Poloxamer 188® as a stabilizer to improve the solubility and in vitro bioavailability of the drug. Nine formulations were prepared based on 32 full-factorial experimental designs to study the effect of the formulation variables such as concentration of poloxamer 188 (%) (X1) and stirring speed (rpm) (X2) as a process variable on the response of particle size (nm) and solubility (µg/mL). The prepared NS was characterized by phase solubility, Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), particle size, zeta potential, entrapment efficiency, and percent drug release. DSC and XRPD analysis of freeze-dried NS formulation showed conversion of PRX into a less crystalline form. NS formulations showed a reduction in the size from 443 nm to 228 nm with -22.5 to -30.5 mV zeta potential and % drug entrapment of 89.76 ± 0.76. TEM analysis confirmed the size reduction at the nano level. The solubility was increased from 44 µg/mL to 87 µg/mL by altering the independent variables. The solubility of PRX NS in water was augmented by 14- to 15-fold (87.28 µg/mL) than pure PRX (6.6 µg/mL). The optimized formulation (NS9) at drug-to-stabilizer concentration exhibited a greater drug release of approximately 96.07% after 120 min as compared to the other NS formulations and pure PRX (36.78%). Thus, all these results revealed that the prepared NS formulations have improved the solubility and in vitro dissolution compared to the pure drug. Furthermore, an increase in the drug release was observed from the NS than that of the pure PRX. All these outcomes signified that the prepared PRX NS showed an increase in solubility and in vitro dissolution behavior; which subsequently would aid in attainment of enhanced bioavailability.

5.
Carbohydr Polym ; 297: 120015, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184138

RESUMEN

Starch-based carriers have a great potential in functional oil encapsulation because of their mild preparation conditions, but the oil loading capacity and underlying anti-oxidation mechanism remain unclear. Here V-type starches were applied to fabricate flaxseed oil powder. Particle size analysis and scanning electron microscopy showed a loose aggregation microstructure of normal maize starch (NMS) prepared using the anti-solvent (AS) precipitation method, with an average size of 24.9 µm. Differential scanning calorimetry displayed a good thermo-oxidation resistance of NMS-derived V-type starch prepared via AS precipitation. Principal component analysis revealed that the oil loading capacity, related closely to V-type crystallinity and D50, has a significant positive correlation with the onset oxidation temperature and a negative correlation with the peroxide, thiobarbituric acid, and ρ-anisidine values. Our original study reveals the effects of V-type crystallinity and aggregation microstructure on the oil loading capacity and anti-oxidation, providing theoretical guidance for developing novel, starch-based carriers.


Asunto(s)
Aceite de Linaza , Almidón , Aceite de Linaza/química , Tamaño de la Partícula , Peróxidos , Polvos , Almidón/química
6.
Int J Pharm ; 628: 122333, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36283642

RESUMEN

This study systematically compared enzalutamide (ENZ) nanocrystals and amorphous formulation (Xtandi® Tablets) and proposed an effective method for predicting pharmacokinetic behavior. ENZ nanosuspensions were prepared by anti-solvent precipitation (ENZ/NS-AS) and wet milling (ENZ/NS-WM) under optimal conditions and were solidified by spray drying and further tableting. Spray dried ENZ/NS-WM was confirmed to exist in crystalline state by DSC and PXRD, while spray dried ENZ/NS-AS was amorphous form. The dissolution testing revealed that ENZ/NS-WM tablets exhibited significantly faster dissolution rate than the physical mixture of untreated ENZ and HPMCAS-HG (1:1) prepared by gently grinding with a mortar and pestle for 2 min and were comparable to Xtandi® Tablets. However, the pharmacokinetic study in beagle dogs indicated that ENZ/NS-WM tablets displayed 0.43-fold lower Cmax and area under the curve from 0 d to 14 d (AUC0-14 d) than Xtandi® Tablets. This difference was well explained by the "spring-parachute" testing, where ENZ/NS-WM tablets exhibited a worse supersaturation performance with 0.46-fold lower supersaturated level (Cspring) and 0.42-fold lower area under the curve of "spring-parachute" process in pH6.8 (AUSPC2-24h) compared to Xtandi® Tablets, indicating that Cspring and AUSPC2-24h obtained from "spring-parachute" testing were better indicators for predicting in vivo behavior than the dissolution rate. Overall, despite the fact that the current nanocrystal formulation did not exhibit advantageous bioavailability, the study provided valuable information and direction for oral drug delivery system based on nano-technology.


Asunto(s)
Nanopartículas , Animales , Perros , Disponibilidad Biológica , Solubilidad , Comprimidos/química , Nanopartículas/química
7.
J Food Sci Technol ; 59(3): 1131-1139, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35185212

RESUMEN

Gum tragacanth nanoparticles were prepared using a combination of intense ultrasound energy and anti-solvent precipitation methods in this research. Results showed that smaller particles were produced by increasing sonication time. As well, increasing the sonication power led to smaller particles, however, increased aggregation. Accordingly, tragacanth solutions with 0.5 and 1% (w/v) concentrations were prepared and mixed with ethanol (ratio 1:10 v/v) after ultrasound treatment with two different drop-wise and direct methods to investigate the effect of anti-solvent addition method on the precipitation of tragacanth particles. The nanoparticle images showed that the concentration of the 0.5% tragacanth solution and the direct mixing method was suitable for particle production with desirable size (72 ± 10 nm) and uniformity. FTIR, XRD, and STA studies showed that the tragacanth chemical composition did not change, and only its particle size decreased. Investigation of wettability showed a contact angle of 88.9 ± 1.7 degrees for nanoparticles providing partial wetting of the particles at the interface. Investigation of the solution viscosities of 0.5% tragacanth gum and tragacanth nanoparticles showed that the viscosity of the nanoparticles solution was significantly lower than that of the tragacanth (p < 0.05) indicating the intense effect of ultrasonication on this property. It can be concluded that the high viscosity of tragacanth gum is not due to its chemical composition but is due to its complex structure.

8.
J Pharm Sci ; 111(5): 1451-1462, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678275

RESUMEN

The purpose of the present study was to prepare Orodispersible films (ODFs) loaded with ketoprofen nanoparticles (KT-NP). The Box-Behnken design was constructed in developing and optimizing the KTF-NP-ODFs. The effect of independent variables: Soluplus® concentration (X1, stabilizer), Tween 80 concentration (X2, surfactant), and KTF concentration (X3, drug) were studied on the dependent variables: particle size (PS, Y1), zeta potential (ZP, Y2), and the polydispersity index (PDI, Y3) of the NPs, as well as on the tensile strength (TS, Y4) and permeability coefficient (PC, Y5) of the KTF-NP-ODFs. Hydroxypropyl methylcellulose (HPMC E15) and polyethylene glycol (PEG 400) were used as the film former polymer and plasticizer, respectively, and their concentrations were kept constant for all formulations. KTF-NPs were prepared by antisolvent precipitation technology. This was followed by the addition of HPMC E15 and PEG 400 to prepare the ODFs using the solvent-casting method. The PS, PDI, and ZP for all the formulations were found in the range of 94 nm to 350 nm, 0.09 to 0.438, and -21.83 mV to -8.03 mV, respectively. The TS and PC of the prepared KTF-NP-ODFs were found between 1.21 MPa to 3.93 MPa and 3.12 × 10-4 cm/h to 34.23 × 10-4 cm/h, respectively. The amorphous nature of the KTF-NP in the ODFs was confirmed by the absence of characteristic crystalline peaks and endothermic events of KTF in X-ray diffraction (XRD) and modulated differential scanning calorimetry (mDSC), respectively. The optimized formulation showed Ì´ 4 times higher permeability as compared to the pure KTF. In addition, the dissolution of pure KTF and the optimized KTF-NP-ODF in pH 1.2 at the end of 60 min was found to be Ì´ 30% and Ì´ 95%, respectively. Conclusively, KTF-NP-ODFs can be a promising drug delivery system to counter the issues related to dysphagia and bypass the common side effects, such as the gastric irritation associated with NSAIDs like KTF.


Asunto(s)
Cetoprofeno , Nanopartículas , Sistemas de Liberación de Medicamentos , Excipientes/química , Nanopartículas/química , Tamaño de la Partícula , Solubilidad
9.
Food Chem ; 367: 129982, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34375887

RESUMEN

Rutin, a plant flavonol characterized by a wide range of biological effects, has limited application in foods because of its low water solubility and scarce bioavailability. This work aimed to investigate the encapsulation of a rutin-rich extract (200.6 ±â€¯1.5 mg/g of rutin) from Ruta chalepensis L. in zein nanoparticles (hydrodynamic diameter of 80-170 nm) prepared by antisolvent precipitation and stabilized by gum arabic (GA). The addition of GA (1:1 mass ratio with zein) significantly reduced the instability phenomena of zein nanoparticles through the deposition of a negatively charged layer as evidenced by the zeta potential and the UV-visible measurement, suggesting an electrostatic interaction between zein and GA. It also contributed to enhancing the encapsulation efficiency of rutin and inducing a rapid release during simulated digestion. These findings show that zein/GA nanoparticles represent a promising delivery system for natural extracts, fabricated through a facile and versatile process.


Asunto(s)
Nanopartículas , Ruta , Zeína , Goma Arábiga , Tamaño de la Partícula , Extractos Vegetales , Rutina
10.
Braz. J. Pharm. Sci. (Online) ; 58: e18800, 2022. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1364431

RESUMEN

Abstract Efavirenz is one of the most commonly used drugs in HIV therapy. However the low water solubility tends to result in low bioavailability. Drug nanocrystals, should enhance the dissolution and consequently bioavailability. The aim of the present study was to obtain EFV nanocrystals prepared by an antisolvent technique and to further observe possible effect, on the resulting material, due to altering crystallization parameters. A solution containing EFV and a suitable solvent was added to an aqueous solution of particle stabilizers, under high shear agitation. Experimental conditions such as solvent/antisolvent ratio; drug load; solvent supersaturation; change of stabilizer; addition of milling step and solvents of different polarities were evaluated. Suspensions were characterized by particle size and zeta potential. After freeze- dried and the resulting powder was characterized by PXRD, infrared spectroscopy and SEM. Also dissolution profiles were obtained. Many alterations were not effective for enhancing EFV dissolution; some changes did not even produced nanosuspensions while other generated a different solid phase from the polymorph of raw material. Nevertheless reducing EFV load produced enhancement on dissolution profile. The most important modification was adding a milling step after precipitation. The resulting suspension was more uniform and the powder presented grater enhancement of dissolution efficacy.


Asunto(s)
Eficacia/clasificación , VIH/patogenicidad , Cristalización/instrumentación , Disolución/métodos , Tamaño de la Partícula , Solubilidad , Preparaciones Farmacéuticas/administración & dosificación , Excipientes/farmacología , Disolución/clasificación , Nanopartículas/administración & dosificación , Métodos
11.
Front Nutr ; 8: 734620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557512

RESUMEN

In this study, the anti-solvent precipitation and a simple complex method were applied for the preparation of bacterial cellulose nanofiber/soy protein isolate (BCNs/SPI) colloidal particles. Fourier transform IR (FT-IR) showed that hydrogen bonds generated in BCNs/SPI colloidal particles via the anti-solvent precipitation were stronger than those generated in BCNs/SPI colloidal particles self-assembled by a simple complex method. Meanwhile, the crystallinity, thermal stability, and contact angle of BCNs/SPI colloidal particles via the anti-solvent precipitation show an improvement in comparison with those of BCNs/SPI colloidal particles via a simple complex method. BCNs/SPI colloidal particles via the anti-solvent precipitation showed enhanced gel viscoelasticity, which was confirmed by dynamic oscillatory measurements. Furthermore, high internal phase Pickering emulsions (HIPEs) were additionally stable due to their stabilization by BCNs/SPI colloidal particles via the anti-solvent precipitation. Since then, HIPEs stabilized by BCNs/SPI colloidal particles via the anti-solvent precipitation were used for the delivery of curcumin. The curcumin-loaded HIPEs showed a good encapsulation efficiency and high 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal efficiency. Additionally, the bioaccessibility of curcumin was significantly increased to 30.54% after the encapsulation using the prepared HIPEs. Therefore, it can be concluded that the anti-solvent precipitation is an effective way to assemble the polysaccharide/protein complex particles for the stabilization of HIPEs, and the prepared stable HIPEs showed a potential application in the delivery of curcumin.

12.
Drug Dev Ind Pharm ; 47(2): 235-245, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33404268

RESUMEN

OBJECTIVE: Cavi-precipitation has the potential to generate drug nanocrystals very efficiently. Achieving smaller than 100 nm particle size for organic drug substances still remained a challenge. The objective of this study was to demonstrate if cavi-precipitation technology can be used to generate smaller than 100 nm drug nanocrystal particle. SIGNIFICANCE: This study demonstrates that cavi-precipitation process can be used to generate drug nanocrystals of the model compound resveratrol (RVT) consists of crystallites of 30-50 nm size. METHOD: RVT was dissolved in different organic solvents to prepare the solvent phase (S-phase). Several stabilizers were tested for the organic phase. A combination of SDS and PVP was used stabilizer system in the aqueous anti-solvent phase (AS-phase). The S-phase was added to the AS-phase inside the Emulsiflex C5 homogenizer. Nanosuspension was characterized by laser diffractometry (LD), photon correlation spectroscopy (PCS) and scanning electron microscopy (SEM). The solid state of the suspended particles was investigated by powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC). RESULTS: It was found that DMSO, alone or in combination with acetone in the S-Phase generated the smallest size RVT nanocrystals. The optimum solvent (S) antisolvent (AS) ratio (S:AS) was found to be 3.6:56.4 (v:v). Span 20 was identified as the best stabilizer for the organic phase at a ratio (w:w) of 1:3 (Span 20:RVT). The particles precipitated from different solvents were predominantly crystalline. CONCLUSIONS: The best sample had a mean particle size (LD) of 167 nm [d(0.5)] which was composed of smaller crystallites having 30-50 nm size (SEM).


Asunto(s)
Nanopartículas , Solventes/química , Animales , Precipitación Química , Cobayas , Tamaño de la Partícula
13.
Ultrason Sonochem ; 70: 105267, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32920301

RESUMEN

The use of deep eutectic solvents (DESs) as a new extraction medium is a step towards the development of green and sustainable technology. In the present study, nine DESs based on choline chloride acids, alcohols, and sugar were screened to study the extraction of curcuminoids from Curcuma longa L. Choline chloride and lactic acid DES at 1:1 M ratio gave the maximum extent of extraction. Further, DES based extraction was intensified using ultrasound. The impact of various process parameters such as % (v/v) water in DES, % (w/v) solid loading, particle size, ultrasound power intensity, and pulse mode operation of ultrasound was studied. The maximum curcuminoids yield of 77.13 mg/g was achieved using ultrasound assisted DES (UA-DES) based extraction in 20% water content DES at 5% solid loading and 0.355 mm particle size with 70.8 W/cm2 power intensity and 60% (6 sec ON and 4 sec OFF) duty cycle at 30 ± 2 °C in 20 min of irradiation time. Kinetics of UA-DES extraction was explained using Peleg's model and concluded that it is compatible with the experimental data. Additionally, anti-solvent (water) precipitation technique was applied, which resulted in 41.97% recovery of curcuminoids with 82.22% purity from UA-DES extract in 8 h of incubation at 0 °C. The comparison was made between conventional Soxhlet, batch, DES and UA-DES based processes on the basis of yield, time, solvent requirement, temperature, energy consumption, and process cost. The developed UA-DES based extraction can be an efficient, cost effective, and green alternative to conventional solvent extraction for curcuminoids.


Asunto(s)
Curcuma/química , Diarilheptanoides/aislamiento & purificación , Solventes/química , Sonicación , Cinética
14.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260990

RESUMEN

Gold nanoparticles (GNPs) are commonly synthesized using the Turkevich method, but there are limitations on the maximum concentration of gold nanoparticles that can be achieved using this method (often < 1 mM (=0.34 mg/mL) gold precursor loading). Here, we report an inverse Turkevich method which significantly increases the concentration of gold nanoparticles (up to 5-fold) in the aqueous phase by introducing poly (vinyl alcohol) (PVA) to the synthesis system for stabilization. The aim of this study is to understand the effect of PVA and other synthesis parameters, such as trisodium citrate and tetrachloroauric acid concentration, with the goal of maximizing concentration while maintaining gold nanoparticle morphology, stability, and narrow size distribution. The size distribution of GNPs is investigated for a range of parameters by dynamic light scattering and electron microscopy, and ultraviolet-visible (UV-vis) spectroscopy is also utilized to explore the localized surface plasmon resonance (LSPR). Further, the interaction between GNPs and PVA is investigated by Fourier-transform infrared spectroscopy. In addition to increasing the gold loading by varying synthesis parameters, we also develop a novel anti-solvent precipitation method for the PVA-coated GNPs, which enables continuous condensation and purification of GNPs by forming a gold/PVA nanocomposite.

15.
Drug Des Devel Ther ; 14: 243-256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021108

RESUMEN

PURPOSE: The aim of this study was to prepare and evaluate betulinic acid nanosuspension (BA-NS) for new drug delivery to enhance its solubility and in vitro anti-tumor activity. METHODS: BA-NS was formulated by an anti-solvent precipitation method using the Box-Behnken design (BBD). Particle size (PS) and Zeta potential were measured by laser particle size analysis. The drug solid state after freeze drying was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR) after freeze drying. The saturation solubility and dissolution rate were determined by solubility assay and in vitro dissolution studies, respectively. The in vitro cytotoxicity assay was performed using 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT) method. RESULTS: The PS was 129.7±12.2 nm having a Zeta potential of -28.1±4.5 mV and the polydispersity index (PDI) was 0.231±0.013, which confirmed that the nanosuspension was in the stable amorphous state. A series of characterization experiments demonstrated that nanoparticles retained original effective structure and existed as spherical or near-spherical nanoparticles in the nanosuspension, but the drug transferred from the crystal state to the amorphous state. The form of lyophilized BA-NS was very successful in enhancing the dissolution rate in PH-dependent way. The cytotoxicity assay revealed that BA-NS could significantly enhance the in vitro anti-proliferation against tumor cells compared to the BA suspension (BA-S). CONCLUSION: The BA-NS can remarkably improve solubility and in vitro antitumor activity, which seems very promising for the treatment of cancers in practical application.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Triterpenos Pentacíclicos/farmacología , Células A549 , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Células Hep G2 , Humanos , Conformación Molecular , Tamaño de la Partícula , Triterpenos Pentacíclicos/síntesis química , Triterpenos Pentacíclicos/química , Solubilidad , Propiedades de Superficie , Células Tumorales Cultivadas , Ácido Betulínico
16.
AAPS PharmSciTech ; 20(7): 273, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31385126

RESUMEN

Orodispersible films (ODFs) are more convenient for paediatric and geriatric patients to take as compared to conventional tablets and capsules. Electrospinning has recently been attempted to produce ODFs. This study investigated the feasibility of formulating poorly water-soluble drug into ODFs using electrospinning technology coupled with the anti-solvent precipitation method. Piroxicam (PX), a poorly water-soluble drug, was chosen as a model drug. Polyvinyl alcohol and polyvinylpyrrolidone were used as film forming polymers. PX microcrystals were prepared using poloxamer as the stabilizer with the anti-solvent precipitation method, and then loaded in ODFs through the electrospinning process. The obtained ODFs were characterized using a scanning electron microscope, X-ray powder diffraction and Fourier transform infrared spectroscopy with respect to the morphology, solid state and potential molecular interaction between the model drug and polymers. The mechanical property, disintegration and dissolution rate of the obtained ODF were evaluated using dynamic mechanical analysis, a customized method and USP2 apparatus. The results showed that PX microcrystals suspended in polymeric solutions could be readily electrospun into fibrous films, where the microcrystals scattered between the fibers. The electrospun fibrous film-based ODFs exhibited satisfactory mechanical behaviour, and fast disintegration upon the polymer selection. In the dissolution tests, almost 90% of PX was dissolved within 6 min from the ODFs, whereas 40% of PX dissolved from physical mixtures in 60 min. This study demonstrated that poorly water-soluble drugs could be formulated into ODFs with satisfactory quality attributes by combining micronization and the electrospinning process.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Química Farmacéutica/métodos , Portadores de Fármacos/síntesis química , Piroxicam/síntesis química , Agua/química , Administración Oral , Cristalización , Humanos , Polímeros/química , Alcohol Polivinílico/química , Solubilidad , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Comprimidos , Difracción de Rayos X/métodos
17.
Biomed Mater Eng ; 29(3): 333-345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29578462

RESUMEN

Nanosuspensions technique is an important tool to enhance the saturation solubility and dissolution velocity of poorly soluble drugs. Trans-resveratrol (t-Res) with extensive pharmacological effects was severely restricted by poor solubility and short biological half-life. In this study, anti-solvent precipitation was employed to development trans-resveratrol nanosuspensions (t-Res NS) with PVPK30 as stabilizer. The physicochemical properties, in vitro release and in vivo pharmacokinetics of t-Res NS were investigated. The mean particle size, zeta potential, encapsulation efficiency and drug loading of t-Res NS prepared by the optimal prescription were 96.9 nm, -20.4mV, 78% and 28.1%, respectively. The morphology of t-Res nanoparticles was spherical indicated by SEM with amorphous phase verified by XRD and DSC. The t-Res NS present a good physical stability as well as enhanced chemical stability. Compared to crude drug, the in vitro dissolution rate of t-Res NS was increased with fitting Higuchi equation (Q=0.3215t1/2+0.0070). The in vivo pharmacokinetic test in rats showed that the AUC0∼t of t-Res NS (559.4 µg/mL·min) was about 3.6-fold higher than that of t-Res solution. Meanwhile, the MRT of t-Res nanosuspensions was longer than that of t-Res solution. These results suggested that NS may be a potentially nanocarrier for clinical delivery of t-Res.


Asunto(s)
Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Nanopartículas/química , Estilbenos/administración & dosificación , Estilbenos/farmacocinética , Animales , Antioxidantes/química , Disponibilidad Biológica , Liberación de Fármacos , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ratas Sprague-Dawley , Resveratrol , Solubilidad , Estilbenos/química , Suspensiones/química
18.
Eur J Pharm Sci ; 106: 381-392, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28571783

RESUMEN

Bicalutamide-bovine serum albumin (Bic-BSA) complexes were prepared by anti-solvent precipitation. Bovine serum albumin (BSA) was used as a stabilizer for particle growth. The physicochemical properties of Bic-BSA were analyzed by scanning electron microscopy, X-ray powder diffraction and differential scanning calorimetry. The interaction between Bic and BSA was characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy and molecular docking. The particle size could be easily reduced to 1-10µm with a good lognormal distribution. The Bic-BSA complexes exhibited nonporous spherical morphology with a uniformly plicated surface. Moreover, the crystal form and thermostability of Bic were altered in the presence of BSA. Bic was found to make hydrogen bonding and hydrophobic interactions with BSA by spectroscopic studies and molecular docking. Results from the Van't Hoff equation and binding free energy calculations indicated that the improvement of physicochemical properties was the consequence of a variety of interactions in the Bic-BSA system. Bic-BSA tablets showed significantly enhanced dissolution. It was concluded that BSA plays an important role in improving the physicochemical properties of Bic due to strong multiple interactions between Bic and BSA.


Asunto(s)
Anilidas/química , Nitrilos/química , Albúmina Sérica Bovina/química , Compuestos de Tosilo/química , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Difracción de Polvo , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Difracción de Rayos X
19.
AAPS PharmSciTech ; 18(2): 349-357, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26961969

RESUMEN

The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.


Asunto(s)
Nanopartículas/química , Valsartán/química , Animales , Disponibilidad Biológica , Química Farmacéutica/métodos , Portadores de Fármacos/química , Masculino , Nanopartículas/metabolismo , Tamaño de la Partícula , Polvos/química , Polvos/metabolismo , Conejos , Solubilidad , Comprimidos/química , Comprimidos/metabolismo , Valsartán/metabolismo
20.
Drug Deliv Transl Res ; 6(5): 519-25, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27206446

RESUMEN

The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.


Asunto(s)
Ácido Glicirretínico/farmacocinética , Nanopartículas/química , Administración Oral , Animales , Química Farmacéutica/métodos , Liberación de Fármacos , Ácido Glicirretínico/administración & dosificación , Ácido Glicirretínico/química , Masculino , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ratas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA