Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979962

RESUMEN

BACKGROUND: Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS: Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION: These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.

2.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733637

RESUMEN

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Frutas , Cromatografía de Gases y Espectrometría de Masas , Guayacol , Esporas Bacterianas , Alicyclobacillus/aislamiento & purificación , Alicyclobacillus/genética , Alicyclobacillus/clasificación , Alicyclobacillus/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Guayacol/análogos & derivados , Guayacol/metabolismo , Guayacol/farmacología , Frutas/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Brasil , Microextracción en Fase Sólida , Argentina , Malus/microbiología , Italia , Calor , Citrus sinensis/microbiología
3.
Food Microbiol ; 120: 104475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431321

RESUMEN

Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.


Asunto(s)
Alicyclobacillus , Pyrococcus furiosus , Jugos de Frutas y Vegetales , Pyrococcus furiosus/genética , Alicyclobacillus/genética , ADN , Frutas
4.
Int J Biol Macromol ; 262(Pt 2): 130214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367781

RESUMEN

Alicyclobacillus acidoterrestris has been gaining attention due to its unique thermo-acidophilic properties and being associated with the deterioration of pasteurized beverages. The objective of this study was to evaluate the antibacterial activity of chitosan with various molecular weights (MWs) (164, 85, 29.2, and 7.1 kDa) and concentrations (0-100 µg/mL) against A. acidoterrestris and its effect on guaiacol production. Various chitosan MWs were co-incubated for 7 days, and the bacterial growth, guaiacol, and vanillic acid contents during storage were determined. The chitosans performed antibacterial effects against A. acidoterrestris. Further, 164 kDa chitosan showed excellent results in controlling the growth and guaiacol formation in A. acidoterrestris. These findings demonstrated the efficacy of chitosan antibacterial activity against A. acidoterrestris and mitigating the guaiacol formation. Chitosan's antibacterial properties are attributed to the elimination of cells and suppression of guaiacol production. This study introduces a new approach for reducing A. acidoterrestris contamination in fruit juices, with potential product quality and safety advantages.


Asunto(s)
Alicyclobacillus , Quitosano , Citrus sinensis , Jugos de Frutas y Vegetales , Quitosano/farmacología , Peso Molecular , Bebidas/análisis , Guayacol , Antibacterianos/farmacología
5.
J Food Sci ; 89(2): 1187-1195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38204435

RESUMEN

Inosine could potentially become a novel antibacterial agent against Alicyclobacillus acidoterrestris as low doses of inosine can prevent its contamination. However, until now the antibacterial mechanism of inosine targeting A. acidoterrestris is still unknown. In this study, to unravel the mechanism of inosine against A. acidoterrestris puzzle, the effects of inosine on bacterial surface hydrophobicity, intracellular protein content, cell membrane damage extent, and permeability of the A. acidoterrestris were investigated. The results showed that inosine can effectively inhibit the growth and reproduction of A. acidoterrestris by destroying the integrity of cell membrane and increasing its permeability, causing the leakage of intracellular nutrients. Furthermore, the interaction networks of inosine target proteins were analyzed. The interaction networks further revealed that damage to bacterial cell membranes might be relevant to inosine's effect on bacterial DNA replication and cell energy metabolism through regulating nucleotide synthesis and metabolism and the activity of translation initiation factors. Finally, the antibacterial mechanism of inosine against A. acidoterrestris was proposed.


Asunto(s)
Alicyclobacillus , Antibacterianos , Antibacterianos/farmacología , Alicyclobacillus/genética , Esporas Bacterianas
6.
Int J Food Microbiol ; 413: 110576, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246025

RESUMEN

Alicyclobacillus acidoterrestris has received much attention due to its unique thermo-acidophilic property and implication in the spoilage of pasteurized juices. The objective of this study was to evaluate the sterilization characteristics and mechanisms of pulsed light (PL) against A. acidoterrestris vegetative cells and spores in apple juice. The results indicated that bacteria cells in apple juice (8-20°Brix) can be completely inactivated within the fluence range of 20.25-47.25 J/cm2, which mainly depended on the soluble solids content (SSC) of juice, and the spores in apple juice (12°Brix) can be completely inactivated by PL with the fluence of 54.00 J/cm2. The PL treatment can significantly increase the leakage of reactive oxygen species (ROS) and proteins from cells and spores. Fluorescence studies of bacterial adenosine triphosphate (ATP) indicated that the loss of ATP was evident. Scanning electron microscopy and confocal laser scanning microscope presented that PL-treated cells or spores had serious morphological damage, which reduced the integrity of cell membrane and led to intracellular electrolyte leakage. In addition, there were no significant negative effects on total sugars, total acids, total phenols, pH value, SSC and soluble sugars, and organic acid content decreased slightly during the PL treatment. The contents of esters and acids in aroma components had a certain loss, while that of alcohols, aldehydes and ketones were increased. These results demonstrated that PL treatment can effectively inactivate the bacteria cells and spores in apple juice with little effect on its quality. This study provides an efficient method for the inactivation of A. acidoterrestris in fruit juice.


Asunto(s)
Alicyclobacillus , Malus , Jugos de Frutas y Vegetales , Malus/microbiología , Bebidas/microbiología , Esporas Bacterianas , Esporas , Adenosina Trifosfato , Azúcares
7.
J Agric Food Chem ; 72(2): 1354-1360, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174972

RESUMEN

Pyrococcus furiosusArgonaute (PfAgo) emerged as a novel endonuclease for the nucleic acid test recently. However, the input of exogenous guide DNA (gDNA) to activate PfAgo has reduced its flexibility. In this work, an enzyme-assisted endogenous gDNA generation-mediated PfAgo for the target detection strategy, termed EGG-PAD, was proposed. With the aid of EcoR Ι, the target double-strand DNA was cut, producing a phosphate group at the 5' end, functioning as gDNA to activate PfAgo for nucleic acid detection. The applicability of this assay was tested in the detection ofAlicyclobacillus acidoterrestris, a bacterium causing the spoilage of fruit juice, showing excellent sensitivity and specificity, ascribed to the "duplex amplification and triple insurance" mechanism. Moreover, EGG-PAD exhibited superior versatility in the identification of common foodborne pathogens. This powerful platform could also be an on-site test tool for detecting nucleic acid-containing organisms such as tumor cell, pathogen, and virus in the future.


Asunto(s)
Alicyclobacillus , Pyrococcus furiosus , Pyrococcus furiosus/genética , ADN , Jugos de Frutas y Vegetales , Alicyclobacillus/genética
8.
Front Microbiol ; 14: 1286187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033555

RESUMEN

In this the antibacterial of quercetin against Alicyclobacillus acidoterrestris was evaluated by measuring the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Subsequently, the effect of quercetin on A. acidoterrestris cell membrane was evaluated through scanning electron microscopy (SEM), surface hydrophobicity determination, diacetate fluorescein staining and propidium iodide (PI) staining. Additionally, the effects of quercetin on intracellular macromolecules and cell metabolism were explored by measuring the culture medium protein, bacterial protein and intracellular sodium and potassium adenosine triphosphate (ATP) enzyme activity. The results revealed that quercetin exhibited the MIC and MBC values of 100 ug/mL and 400 ug/mL, respectively, against A. acidoterrestris. The SEM results revealed that quercetin could induce irreversible damage to the cell membrane effectively. Moreover, quercetin could enhance the surface hydrophobicity of A. acidoterrestris. The results of flow cytometry and fluorescence microscopy analyses revealed that quercetin could promote cell damage by altering the cell membrane permeability of A. acidoterrestris, inducing the release of nucleic acid substances from the cells. Furthermore, the determination of protein content in the culture medium, bacterial protein content, and the Na(+)/K(+)-ATPase activity demonstrated that quercetin could reduce the intracellular protein content and impedes protein expression and ATPase synthesis effectively, leading to apoptosis.

9.
Food Chem X ; 19: 100790, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780307

RESUMEN

Fruit juice spoilage that caused by contaminated Alicyclobacillus has brought huge losses to beverage industry worldwide. Thus, it is very essential to understand the growth and metabolism processing of Alicyclobacillus acidoterrestris (A. acidoterrestris) in controlling juice spoilage caused by Alicyclobacillus. In this work, simulative models for the growth and metabolism of A. acidoterrestris were systematically conducted in the medium and fruit juice. The results showed that low temperature (4 ℃) and strong acidic environment (pH 3.0-2.0) of medium inhibited the growth and reproduction of A. acidoterrestris. In addition, with decreasing temperature, the color, smell and turbidity of commercially available juice supplemented with A. acidoterrestris significantly improved. This work provided a clear exploration of growth characteristics of A. acidoterrestris by applying theory (medium) to reality (fruit juices), and pave fundamental for exploring the zero additives of controlling juice spoilage.

10.
Foods ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37685209

RESUMEN

The aim of this research was to investigate the antimicrobial characteristics and mechanism of hesperetin against Alicyclobacillus acidoterrestris vegetative cells. The results presented show that hesperetin had effective antimicrobial activity on Alicyclobacillus acidoterrestris vegetative cells, minimum inhibition concentration (MIC) of 0.0625 g/L, and minimum bacterial concentration (MBC) greater than 2 g/L. Moreover, treatment of hesperetin caused significant damage to cell integrity, preventing the growth of Alicyclobacillus acidoterrestris vegetative cells, enhancing the leakage of nucleic acid and proteins, and destroying the vegetative cell morphology. To further investigate the mechanism, transcriptomic analysis was carried out, and 3056 differentially expressed genes (DEGs) were detected. Gene ontology (GO) enrichment analysis revealed that hesperetin inhibits Alicyclobacillus acidoterrestris by affecting the intracellular nitrogen metabolism and amino acid metabolism. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis explained that hesperetin was also able to prevent the growth of Alicyclobacillus acidoterrestris by affecting the processes of nutrient transport, energy metabolism, and flagella motility. These results provide new insights into the antimicrobial effects and mechanism of hesperetin against Alicyclobacillus acidoterrestris, which provides a new method for inactive Alicyclobacillus acidoterrestris in the juice industry.

11.
Microbiol Spectr ; 11(4): e0002223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37318333

RESUMEN

Alicyclobacillus acidoterrestris, which has strong acidophilic and heat-resistant properties, can cause spoilage of pasteurized acidic juice. The current study determined the physiological performance of A. acidoterrestris under acidic stress (pH 3.0) for 1 h. Metabolomic analysis was carried out to investigate the metabolic responses of A. acidoterrestris to acid stress, and integrative analysis with transcriptome data was also performed. Acid stress inhibited the growth of A. acidoterrestris and altered its metabolic profiles. In total, 63 differential metabolites, mainly enriched in amino acid metabolism, nucleotide metabolism, and energy metabolism, were identified between acid-stressed cells and the control. Integrated transcriptomic and metabolomic analysis revealed that A. acidoterrestris maintains intracellular pH (pHi) homeostasis by enhancing amino acids decarboxylation, urea hydrolysis, and energy supply, which was verified using real-time quantitative PCR and pHi measurement. Additionally, two-component systems, ABC transporters, and unsaturated fatty acid synthesis also play crucial roles in resisting acid stress. Finally, a model of the responses of A. acidoterrestris to acid stress was proposed. IMPORTANCE Fruit juice spoilage caused by A. acidoterrestris contamination has become a major concern and challenge in the food industry, and this bacterium has been suggested as a target microbe in the design of the pasteurization process. However, the response mechanisms of A. acidoterrestris to acid stress still remain unknown. In this study, integrative transcriptomic, metabolomic, and physiological approaches were used to uncover the global responses of A. acidoterrestris to acid stress for the first time. The obtained results can provide new insights into the acid stress responses of A. acidoterrestris, which will point out future possible directions for the effective control and application of A. acidoterrestris.


Asunto(s)
Alicyclobacillus , Transcriptoma , Calor , Alicyclobacillus/genética , Manipulación de Alimentos/métodos , Esporas Bacterianas , Microbiología de Alimentos
12.
Genes (Basel) ; 14(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372483

RESUMEN

The spoilage of juices by Alicyclobacillus spp. remains a serious problem in industry and leads to economic losses. Compounds such as guaiacol and halophenols, which are produced by Alicyclobacillus, create undesirable flavors and odors and, thus, decrease the quality of juices. The inactivation of Alicyclobacillus spp. constitutes a challenge because it is resistant to environmental factors, such as high temperatures, and active acidity. However, the use of bacteriophages seems to be a promising approach. In this study, we aimed to isolate and comprehensively characterize a novel bacteriophage targeting Alicyclobacillus spp. The Alicyclobacillus phage strain KKP 3916 was isolated from orchard soil against the Alicyclobacillus acidoterrestris strain KKP 3133. The bacterial host's range and the effect of phage addition at different rates of multiplicity of infections (MOIs) on the host's growth kinetics were determined using a Bioscreen C Pro growth analyzer. The Alicyclobacillus phage strain KKP 3916, retained its activity in a wide range of temperatures (from 4 °C to 30 °C) and active acidity values (pH from 3 to 11). At 70 °C, the activity of the phage decreased by 99.9%. In turn, at 80 °C, no activity against the bacterial host was observed. Thirty minutes of exposure to UV reduced the activity of the phages by almost 99.99%. Based on transmission-electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the Alicyclobacillus phage strain KKP 3916 was classified as a tailed bacteriophage. The genomic sequencing revealed that the newly isolated phage had linear double-stranded DNA (dsDNA) with sizes of 120 bp and 131 bp and 40.3% G+C content. Of the 204 predicted proteins, 134 were of unknown function, while the remainder were annotated as structural, replication, and lysis proteins. No genes associated with antibiotic resistance were found in the genome of the newly isolated phage. However, several regions, including four associated with integration into the bacterial host genome and excisionase, were identified, which indicates the temperate (lysogenic) life cycle of the bacteriophage. Due to the risk of its potential involvement in horizontal gene transfer, this phage is not an appropriate candidate for further research on its use in food biocontrol. To the best of our knowledge, this is the first article on the isolation and whole-genome analysis of the Alicyclobacillus-specific phage.


Asunto(s)
Alicyclobacillus , Bacteriófagos , Alicyclobacillus/genética , Bacteriófagos/genética , Calor , Temperatura
13.
Foods ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37048353

RESUMEN

A. acidoterrestris has been identified as the target bacterium in fruit juice production due to its high resistance to standard heat treatment. Multiple studies have shown that cold plasma can effectively inactivate pathogenic and spoilage microorganisms in juices. However, we are aware of only a few studies that have used cold plasma to inactivate A. acidoterrestris. In this study, the inactivation efficacy of cold plasma was determined using the plate count method and described using a biphasic model. The effects of the food matrix, input power, gas flow rate, and treatment time on inactivation efficacy were also discovered. Scavenging experiments with reactive oxygen species (•OH, •O2-, and 1O2), scanning electron microscopy (SEM), Raman spectra, as well as an in vitro toxicology assay kit, were used to determine the inactivation mechanism. According to the plate count method, a maximum reduction of 4.14 log CFU/ mL could be achieved within 7 s, and complete inactivation could be achieved within 240 s. The scavenging experiments showed that directly cold plasma-produced singlet oxygen plays the most crucial role in inactivation, which was also confirmed by the fluorescence probe SOSG. The scanning electron microscopy (SEM) and Raman spectra showed that the cold plasma treatment damaged the membrane integrity, DNA, proteins, lipids, and carbohydrates of A. acidoterrestris. The plate count results and the apple juice quality evaluation showed that the cold plasma treatment (1.32 kV) could inactivate 99% of A. acidoterrestris within 60 s, with no significant changes happening in apple juice quality, except for slight changes in the polyphenol content and color value.

14.
Food Microbiol ; 113: 104273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098432

RESUMEN

Spoilage of juice and beverages by a thermo-acidophilic bacterium, Alicyclobacillus acidoterrestris, has been considered to be a major and widespread concern for juice industry. Acid-resistant property of A. acidoterrestris supports its survival and multiplication in acidic juice and challenges the development of corresponding control measures. In this study, intracellular amino acid differences caused by acid stress (pH 3.0, 1 h) were determined by targeted metabolomics. The effect of exogenous amino acids on acid resistance of A. acidoterrestris and the related mechanisms were also investigated. The results showed that acid stress affected the amino acid metabolism of A. acidoterrestris, and the selected glutamate, arginine, and lysine contributed to its survival under acid stress. Exogenous glutamate, arginine, and lysine significantly increased the intracellular pH and ATP level, alleviated cell membrane damage, reduced surface roughness, and suppressed deformation caused by acid stress. Additionally, the up-regulated gadA and speA genes and the enhanced enzymatic activity confirmed that glutamate and arginine decarboxylase systems played a crucial role in maintaining pH homeostasis of A. acidoterrestris under acid stress. Our research reveals an important factor contributing to acid resistance of A. acidoterrestris, which provides an alternative target for effectively controlling this contaminant in fruit juices.


Asunto(s)
Alicyclobacillus , Aminoácidos , Aminoácidos/farmacología , Lisina , Bebidas/microbiología , Alicyclobacillus/genética , Arginina , Glutamatos , Esporas Bacterianas
15.
Int J Food Microbiol ; 386: 110024, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446270

RESUMEN

Pasteurized sports drinks and other fruit-based beverages are susceptible to deterioration due to thermal processing ineffectiveness to inactivate certain spoilage microorganisms, like Alicyclobacillus acidoterrestris. This represents a major challenge for the beverage industry. The goals of this study were to: i) investigate the UV-C inactivation (annular thin film unit, actinometrical delivered fluence: 795-1270 mJ/cm2, 10-15 min, 20 °C, 1.8 L/h, Reh = 391-1067, recirculation mode operation) and the evolution during refrigerated storage of A. acidoterrestris ATCC 49025 spores and single or composite Escherichia coli ATCC 25922 in isotonic sports drinks (ISDs) made from orange (orange-ISD, UVT% = 81) or orange-banana-mango-kiwi-strawberry-lemon juices (multi-fruit-ISD, UVT% = 91), compared to a turbid orange-tangerine juice (OT juice, UVT% = 40); ii) assess the effect of pH, °Brix, A254nm, turbidity, colour and particle size of the ISDs and juice on microbial inactivation, iii) evaluate the evolution of native microbiota during cold storage, iv) investigate the Coroller, biphasic, Weibull, and Weibull-plus-tail models' ability to describe microbial inactivation and v) measure 5-hydroxymethylfurfural (HMF) formation. The modified biodosimetry method was used to calculate the germicidal UV-C fluences. Heat pasteurization (T-coil, 80 °C/6 min) was evaluated as the control treatment. UV-C was highly effective at inactivating E. coli as 4.1-5.1 and 4.5-5.6 log reductions were determined in the multi-fruit-ISD and orange-ISD, respectively, barely impacted by the background microbiota. No significant differences were recorded for the inactivation of E. coli in the UV-C and T-coil systems. Whereas, a significantly higher inactivation of A. acidoterrestris spores was achieved by UV-C (3.7-4.0 log reductions), compared to the negligible one achieved by the thermal treatment. Even though E. coli inactivation curves were similar in shape, UV-C was less effective when a cocktail of other E. coli strains was present. In comparison to the OT juice, the ISDs' inactivation kinetics were markedly different in shape, with a rapid decrease in population during the first minutes of treatment. The germicidal fluence (Hd biod) corresponding to A. acidoterrestris (19.1 mJ/cm2) was selected as it was higher than the one obtained for E. coli (11.0 mJ/cm2). UV-C induced 2.8- or 1.3 and 2.3- or 0.8 log-reductions of total aerobes or moulds and yeasts in the multi-fruit-ISD and orange-ISD, respectively. Compared to the other models, the Coroller and biphasic models showed a better fit and more accurate parameter estimates. UV-C-induced HMF production was not significant in the ISDs. The current study found that the UV-C treatment was more effective than typical heat pasteurization for inactivating A. acidoterrestris spores in isotonic drinks, following a similar trend for E. coli and native microbiota.


Asunto(s)
Alicyclobacillus , Citrus sinensis , Escherichia coli , Frutas , Esporas Bacterianas , Bebidas
16.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36412233

RESUMEN

The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.

17.
Front Nutr ; 9: 1012901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185645

RESUMEN

The bactericidal effect of dielectric barrier discharge-atmospheric cold plasma (DBD-ACP, 20, and 30 kV) against Alicyclobacillus acidoterrestris on the saline solution and apple juice was investigated. Results show that DBD-ACP is effective for the inactivation of A. acidoterrestris by causing significant changes in cell membrane permeability and bacterial morphology. The effect of culture temperatures on the resistance of A. acidoterrestris to DBD-ACP was also studied. A. acidoterrestris cells grown at 25°C had the lowest resistance but it was gradually increased as the culture temperature was increased (25-45°C) (p < 0.05). Moreover, results from Fourier transform infrared spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometer (GC-MS) analysis showed that the increase in the culture temperature can gradually cause the decreased level of cyclohexaneundecanoic acid in the cell membrane of A. acidoterrestris (p < 0.05). In contrast, cyclopentaneundecanoic acid, palmitic acid, and stearic acid showed an increasing trend in which the fluidity of the bacterial cell membrane decreased. This study shows a specific correlation between the resistance of A. acidoterrestris and the fatty acid composition of the cell membrane to DBD-ACP.

18.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240455

RESUMEN

Several species from the Alicyclobacillus genus have received much attention from the food and beverages industries. Their presence has been co-related with spoilage events of acidic food matrices, namely fruit juices and other fruit-based products, the majority attributed to Alicyclobacillus acidoterrestris. In this work, a combination of short and long reads enabled the assembly of the complete genome of A. acidoterrestris DSM 3922T, perfecting the draft genome already available (AURB00000000), and revealing the presence of one chromosome (4,222,202 bp; GC content 52.3%) as well as one plasmid (124,737 bp; GC content 46.6%). From the 4,288 genes identified, 4,004 sequences were attributed to coding sequences with proteins, with more than 80% being functionally annotated. This allowed the identification of metabolic pathways and networks and the interpretation of high-level functions with significant reliability. Furthermore, the additional genes of interest related to spore germination, off-flavor production, namely the vdc cluster, and CRISPR arrays, were identified. More importantly, this is the first complete and closed genome sequence for a taint-producing Alicyclobacillus species and thus represents a valuable reference for further comparative and functional genomic studies.


Asunto(s)
Alicyclobacillus , Alicyclobacillus/genética , Alicyclobacillus/metabolismo , Reproducibilidad de los Resultados , Jugos de Frutas y Vegetales , Análisis de Secuencia de ADN
19.
Food Res Int ; 156: 111087, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650993

RESUMEN

Alicyclobacillus acidoterrestris (AAT) was proposed as an index of pasteurization design for high-acid fruit products due to its spore resistance and repeated spoilage incidences in fruit juices. This study aimed to determine the effectiveness of pulsed multifrequency ultrasound to minimize AAT spores and vegetative cells in aqueous suspension. For this research, an investigation of the reactive oxygen species and antioxidant activity was performed to examine the effect of temperature and frequency on AAT spore inoculation. Total decreases in AAT bacteria were 5.99, 5.74 Log CFU/mL in vegetative cells for dual-frequency thermosonication (DFTS) and dual-frequency ultrasonication (DFUS), respectively, while 5.90 and 5.38 Log CFU/mL in spores for both DFUS and DFTS, respectively. The loss of the percentage of cells in ultrasound (US) and thermosonication (TS) treatments was inversely associated with the rate of O2-and H2O2 development. The fluorescence microscopy revealed a higher bactericidal efficacy of DFTS compared to the DFUS and control. Scanning Electron Microscopy (SEM) and Transmission electron microscopy (TEM) demonstrated ultra-structural modifications such as the interruption of cell walls by cavitation and pores in the membrane structure of the AAT bacteria induced by sonoporation. Several TS frequencies of 20/40/60, 20/40, and 20 kHz treated spores had a higher electrical conductivity than untreated ones, with an improvement of 7.94, 5.68, and 3.72 %, respectively. Fourier-transform infrared (FTIR) spectroscopy revealed major changes in the spectral region of membrane fatty acids and proteins of AAT. Simultaneously, AAT inactivation specific energy rate was significantly reduced using dual-frequency ultrasound, compared to mono-frequency thermosonication. The significant results of this work recommended pulsed DFUS as an alternative application to mono-frequency US in beverage industries.


Asunto(s)
Peróxido de Hidrógeno , Esporas Bacterianas , Alicyclobacillus , Bebidas/microbiología , Peróxido de Hidrógeno/farmacología , Esporas
20.
J Agric Food Chem ; 70(3): 857-868, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35040323

RESUMEN

The risk of fruit juice contamination caused by microorganisms, especially Alicyclobacillus acidoterrestris, has been reported worldwide. To develop cost-effective control methods, in this work, flower-like magnetic molybdenum disulfide (Fe3O4@MoS2) nanoparticles (NPs) were fabricated by a facile two-step hydrothermal method. After further modifying polyacrylic acid (PAA) on the surface of the NPs, epsilon-polylysine (EPL) was immobilized via N-(3-dimethylaminopropyl)-N-carbodiimide hydrochloride/N-hydroxysuccinimide coupling reaction to obtain the Fe3O4@MoS2@PAA-EPL nanocomposites. Antibacterial results exhibited that the synthesized nanocomposites showed effective antibacterial activity against A. acidoterrestris with a minimum inhibitory concentration of 0.31 mg mL-1. Investigation on the antibacterial mechanism revealed that the presence of nanocomposites caused damage and disruption of the bacterial membrane through dent formation, resulting in the leakage of intracellular protein. Moreover, the activity of dehydrogenase enzymes was inhibited with the treatment of Fe3O4@MoS2@PAA-EPL, causing the reduction of metabolic activity and adenosine triphosphate levels in bacteria. Simultaneously, the presence of nanocomposites improved intracellular reactive oxygen species levels, and this disrupted the antioxidant defense system and caused oxidative damage to bacteria. Furthermore, Fe3O4@MoS2@PAA-EPL nanocomposites were confirmed to possess satisfactory biocompatibility by performing in vitro cytotoxicity and in vivo acute toxicity experiments. The aim of this research was to develop a new pathway for the inhibition of A. acidoterrestris in the juice industry.


Asunto(s)
Alicyclobacillus , Polilisina , Antibacterianos/farmacología , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA