Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.934
Filtrar
1.
J Colloid Interface Sci ; 678(Pt B): 277-286, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39245018

RESUMEN

Nickel-aluminium layered double hydroxides (NiAl-LDHs) have emerged as promising electrode materials for supercapacitors (SCs) due to their inherently high specific surface area and theoretical specific capacitance, which are primarily attributed to the rapid pseudocapacitive response at the surface. However, NiAl-LDHs typically form agglomerated nanosheets, leading to a significant reduction in specific surface area, which is crucial for enhancing the number of active sites and improving the capacitive properties of the materials. To overcome this limitation, 2D nanostructures were assembled into 3D architectures by synthesizing NiAl-LDHs with distinct morphologies in a one-step hydrothermal process using an alkaline agent (NH4F). This approach resulted in the formation of 3D NiAl-LDH/HN4F structures, which exhibit a larger contact area and a greater number of redox-active sites. Consequently, the 3D NiAl-LDH/HN4F electrodes demonstrated a significantly higher specific surface area, leading to remarkable improvements in specific capacitance (1219 ± 30F g-1) and energy density (61 ± 1 Wh kg-1) compared to their 2D counterparts. This structural enhancement increases both the surface area and active site density while providing a new framework for designing high-performance LDH-based electrodes.

2.
BMC Musculoskelet Disord ; 25(1): 723, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244540

RESUMEN

OBJECTIVE: To evaluate the clinical outcomes of arthroscopic inside-out ganglionectomy of dominant dorsal wrist ganglion. METHODS: Patients with dominant wrist ganglion cyst treated in our hospital from January 1, 2014 to June 31, 2023 was enrolled in this retrospective analysis. All patients underwent dye-assist arthroscopic inside-out ganglionectomy. After discharge, the patients were followed for a minimum of 6 months. The primary outcomes were to assess patient wrist function using the Patient-Rated Wrist Evaluation (PRWE) and Mayo Modified Wrist Score (MMWS). The secondary outcomes were visual analog score (VAS), wrist active range of motion (ROM), grip strength, recurrence rate and complication. RESULTS: All ganglion were successfully resected after dye staining. Patients were followed for an average of 12.17 months. There were no significant changes between preoperative and postoperative wrist active ROM or grip strength, except for wrist flexion (which showed a slightly greater improvement after surgery, P = 0.049), there were notable improvements in VAS, MMWS, and PRWE postoperatively. Recurrence occurred in 3 patients. No major complications observed during the follow-up period. CONCLUSION: Dye-assist arthroscopic inside-out ganglionectomy is safe and uncomplicated, worth of clinical promotion.


Asunto(s)
Artroscopía , Ganglión , Ganglionectomía , Humanos , Estudios Retrospectivos , Masculino , Artroscopía/métodos , Artroscopía/efectos adversos , Femenino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Ganglión/cirugía , Ganglionectomía/métodos , Rango del Movimiento Articular , Colorantes , Articulación de la Muñeca/cirugía , Articulación de la Muñeca/fisiopatología , Adulto Joven , Estudios de Seguimiento , Fuerza de la Mano , Recurrencia
3.
Front Public Health ; 12: 1442728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224554

RESUMEN

Background: China exited strict Zero-COVID policy with a surge in Omicron variant infections in December 2022. Given China's pandemic policy and population immunity, employing Baidu Index (BDI) to analyze the evolving disease landscape and estimate the nationwide pneumonia hospitalizations in the post Zero COVID period, validated by hospital data, holds informative potential for future outbreaks. Methods: Retrospective observational analyses were conducted at the conclusion of the Zero-COVID policy, integrating internet search data alongside offline records. Methodologies employed were multidimensional, encompassing lagged Spearman correlation analysis, growth rate assessments, independent sample T-tests, Granger causality examinations, and Bayesian structural time series (BSTS) models for comprehensive data scrutiny. Results: Various diseases exhibited a notable upsurge in the BDI after the policy change, consistent with the broader trajectory of the COVID-19 pandemic. Robust connections emerged between COVID-19 and diverse health conditions, predominantly impacting the respiratory, circulatory, ophthalmological, and neurological domains. Notably, 34 diseases displayed a relatively high correlation (r > 0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 1,332%. In these 34 diseases, causal relationships have been confirmed for 23 of them, while 28 garnered validation from hospital-based evidence. Notably, 19 diseases obtained concurrent validation from both Granger causality and hospital-based data. Finally, the BSTS models approximated approximately 4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 months subsequent to the policy relaxation. Conclusion: This investigation elucidated substantial associations between COVID-19 and respiratory, circulatory, ophthalmological, and neurological disorders. The outcomes from comprehensive multi-dimensional cross-over studies notably augmented the robustness of our comprehension of COVID-19's disease spectrum, advocating for the prospective utility of internet-derived data. Our research highlights the potential of Internet behavior in predicting pandemic-related syndromes, emphasizing its importance for public health strategies, resource allocation, and preparedness for future outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , China/epidemiología , Estudios Retrospectivos , Hospitalización/estadística & datos numéricos , Teorema de Bayes , Política de Salud , Pandemias
4.
Carbohydr Polym ; 345: 122549, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227093

RESUMEN

Osteoporosis, a prevalent skeletal disorder characterized by diminished bone density, compromised microstructure, and heightened fracture susceptibility, poses a growing public health concern exacerbated by aging demographics. Polysaccharides-based materials, derived from a diverse range of sources, exhibit exceptional biocompatibility. They possess a structure similar to the extracellular matrix, which can enhance cell adhesion in vivo, and demonstrate superior biological activity compared to artificial materials. This study delved into an in-depth examination of the various biomaterials and polysaccharide families associated with the treatment of osteoporosis. This article elucidates the benefits and attributes of polysaccharide-based materials in contrast to current clinical treatment modalities, delineating how these materials address prevalent challenges in the clinical management of osteoporosis. An overview of the prospective applications of polysaccharide-based materials in the future is also provided, as well as outlines the challenges that should be addressed prior to the clinical implementation of such materials.


Asunto(s)
Materiales Biocompatibles , Osteoporosis , Polisacáridos , Osteoporosis/tratamiento farmacológico , Polisacáridos/química , Polisacáridos/uso terapéutico , Polisacáridos/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Densidad Ósea/efectos de los fármacos
5.
Lipids Health Dis ; 23(1): 292, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261844

RESUMEN

AIMS: The purpose of this study was to analyze the dynamic trends of ischemic heart disease (IHD) mortality attributable to high low-density lipoprotein cholesterol (LDL-C). METHODS: Data on IHD mortality attributable to high LDL-C from 1990 to 2021 were extracted from the global disease burden database. Joinpoint software was used to estimate the average annual percentage change (AAPC) in the age-standardized mortality rate (ASMR). An age‒period‒cohort model was used to analyze the impacts of age, period, and cohort on these changes. The Bayesian framework was used to predict IHD mortality attributable to high LDL-C from 2022 to 2040. RESULTS: The overall ASMR of IHD attributable to high LDL-C decreased from 50. 479 per 100,000 people in 1990 to 32.286 per 100,000 people in 2021, and ASMR of IHD attributable to high LDL-C was higher in males than in females. The longitudinal age curves of the overall IHD mortality attributable to high LDL-C showed a monotonic upward trend, especially after 65 years of age. The period and cohort effect relative risk (RR) values of overall IHD mortality attributable to high LDL-C showed a downward trend. The overall ASMR of IHD attributable to high LDL-C is predicted to show a downward trend, and male IHD mortality attributable to high LDL-C is expected to be higher than that of females. CONCLUSION: This study revealed a sustained decrease in IHD mortality attributable to high LDL-C over three decades, with a continued decline expected. Despite this, gender disparities persist, with males experiencing higher mortality rates and elderly individuals remaining a vulnerable group.


Asunto(s)
LDL-Colesterol , Isquemia Miocárdica , Humanos , Isquemia Miocárdica/mortalidad , Isquemia Miocárdica/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , LDL-Colesterol/sangre , Adulto , Estudios de Cohortes , Teorema de Bayes , Factores de Edad , Anciano de 80 o más Años , Factores de Riesgo
6.
Plant Phenomics ; 6: 0246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263595

RESUMEN

Monitoring spores is crucial for predicting and preventing fungal- or oomycete-induced diseases like grapevine downy mildew. However, manual spore or sporangium detection using microscopes is time-consuming and labor-intensive, often resulting in low accuracy and slow processing speed. Emerging deep learning models like YOLOv8 aim to rapidly detect objects accurately but struggle with efficiency and accuracy when identifying various sporangia formations amidst complex backgrounds. To address these challenges, we developed an enhanced YOLOv8s, namely, AFM-YOLOv8s, by introducing an Adaptive Cross Fusion module, a lightweight feature extraction module FasterCSP (Faster Cross-Stage Partial Module), and a novel loss function MPDIoU (Minimum Point Distance Intersection over Union). AFM-YOLOv8s replaces the C2f module with FasterCSP, a more efficient feature extraction module, to reduce model parameter size and overall depth. In addition, we developed and integrated an Adaptive Cross Fusion Feature Pyramid Network to enhance the fusion of multiscale features within the YOLOv8 architecture. Last, we utilized the MPDIoU loss function to improve AFM-YOLOv8s' ability to locate bounding boxes and learn object spatial localization. Experimental results demonstrated AFM-YOLOv8s' effectiveness, achieving 91.3% accuracy (mean average precision at 50% IoU) on our custom grapevine downy mildew sporangium dataset-a notable improvement of 2.7% over the original YOLOv8 algorithm. FasterCSP reduced model complexity and size, enhanced deployment versatility, and improved real-time detection, chosen over C2f for easier integration despite minor accuracy trade-off. Currently, the AFM-YOLOv8s model is running as a backend algorithm in an open web application, providing valuable technical support for downy mildew prevention and control efforts and fungicide resistance studies.

7.
Mol Pharm ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224912

RESUMEN

Psoriasis is a chronic immune-mediated inflammatory skin disease, affecting ∼ 3% of the US population. Although multiple new systemic therapies have been introduced for the treatment of psoriatic skin disease, topical and intralesional glucocorticoids (GCs) continue to be used as effective psoriasis therapies. Their clinical utility, however, has been hampered by significant adverse effects, including skin atrophy and pigmentation as well as elevated blood glucose levels and hypertension. To mitigate these limitations, we have developed a N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug (ProGel-Dex) and assessed its therapeutic efficacy and safety in an imiquimod (IMQ)-induced psoriasis-like (PL) mouse model. ProGel-Dex was intradermally administered once at three dosing levels: 0.5, 1.0, and 2.0 mg/kg/day Dex equivalent at the beginning of the study. PL mice were also treated with daily topical saline or Dex, which were used as control groups. Treatment of PL mice with ProGel-Dex dosed at 0.5 mg/kg/day resulted in a significant reduction in scaling and erythema. Improvement in gross pathology scores, skin histological scores, and serum cytokine levels was also observed. Interestingly, for mice treated with ProGel-Dex at 1.0 and 2.0 mg/kg/day Dex equivalent, only improvement in skin erythema was observed. GC-associated side effects, such as elevation of serum alanine aminotransferase (ALT) and amylase levels and body weight loss, were not observed in mice treated with ProGel-Dex at 0.5 and 1.0 mg/kg/day Dex equivalent. Collectively, these results demonstrate the efficacy and improved safety of ProGel-Dex in treating psoriatic skin lesions when compared to topical Dex treatment, supporting its translational potential for clinical management of lesional skin psoriasis.

8.
Int J Biol Sci ; 20(11): 4341-4363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247822

RESUMEN

Macrophages are the most abundant alternative immune cells in the tumor microenvironment (TME). The cross-talk between macrophages and tumor cells provides an important shelter for the occurrence and development of tumors. As an important information transfer medium, exosomes play an important role in intercellular communication. Nonetheless, how exosomal lncRNAs coordinate the communication between tumor cells and immune cells in hepatocellular carcinoma (HCC) is incompletely understood. We found that HCC exosomes-derived antisense RNA of SLC16A1(SLC16A1-AS1) promoted the malignant progression of HCC by regulating macrophage M2-type polarization. Mechanistically, the HCC exosomal SLC16A1-AS1 enhanced mRNA stabilization of SLC16A1 in macrophage by promoting the interaction between 3' untranslated regions (3'UTR) of SLC16A1 mRNA and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). As a lactate transporter, SLC16A1 accelerated lactate influx and then activated c-Raf/ERK signaling to induce M2 polarization of macrophages. Reciprocally, M2 macrophages secreted IL-6 to activate STAT3 and then induce METTL3 transcription in HCC cells, which increasing m6A methylation and stabilization of SLC16A1-AS1. In turn, the reciprocal SLC16A1-AS1/IL-6 signaling between HCC cells and M2 macrophages promoted the proliferation, invasion and glycolysis of HCC cells. Our study highlights that exosomal SLC16A1-AS1 acts as a signaling message that induces lactate-mediated M2 polarization of macrophages, and implies that SLC16A1-AS1 might be an applicable target for therapeutic treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Exosomas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral
9.
Sci Total Environ ; 953: 176143, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260495

RESUMEN

Global Net Anthropogenic Nitrogen Input (NANI) at high resolution is crucial for assessing the impact of human activities on aquatic environments. Insufficient global high-resolution data sources and methods have hindered the effective examination of the global characteristics and driving forces of NANI. This study presents a general framework for calculating global NANI, providing estimates at a 5-arc-minute resolution and over 1.42 million lake basins in 2015. The results highlight the region near the Tropic of Cancer as a concentration area for high NANI and an inflection point for latitude-based accumulation variation. It also emphasizes the uneven distribution of NANI among continents, with Asia and Africa having the highest proportions, yet their high and low values are notably lower than those of Europe and South America. A similar pattern is observed in global lakes, where Asia has the smallest quantity and volume, but the highest NANI intensity. In contrast, North America and Europe have larger quantities and volumes but the lowest NANI intensity. The global distribution characteristics reveal a clustering pattern in high and low values, with 1.25 % of the area having a sum of NANI exceeding 20 %. The uncertainty analysis regarding model parameters indicates that continents with the highest NANI do not always exhibit the highest uncertainty. These results bridge the gap between global nitrogen sustainable management and anthropogenic nitrogen input. They support research on spatiotemporal changes and controlling factors of global river nutrient loads, as well as the impact of climatic factors on basin nitrogen loss and its variability.

10.
PNAS Nexus ; 3(8): pgae290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114575

RESUMEN

The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.

11.
Cancer Lett ; 601: 217178, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142497

RESUMEN

Tertiary lymphoid structures (TLSs) were associated with survival in esophageal squamous cell carcinoma (ESCC) undergoing surgery alone (SA). However, their clinical relevance in neoadjuvant therapies remains less known. Here, we firstly investigated the presence, maturation and spatial distribution of TLSs in 359 ESCC patients receiving neoadjuvant chemotherapy (NCT), neoadjuvant immunotherapy (NCI), neoadjuvant chemoradiotherapy (NCRT) or SA. We found mature TLS (MTLS) was an independent prognostic factor in ESCC. NCI group had the lowest immature TLS cases. NCRT group had the lowest MTLSs. MTLSs mostly located in stromal and normal compartments; these MTLSs were positively correlated with neoadjuvant therapy outcomes. NCI group displayed the highest T cells within 150 µm proximity of TLSs among the four groups. Most T cells were dispersed up to more than 150 µm from TLSs, while B cells remained concentrated within TLSs. Innate lymphoid cells and follicular dendritic cells infiltrated and connected with survival differently in NCRT and NCI groups compared with SA group. The novel PD-L1 combined positive score, NCPS, was positively connected with MTLSs and neoadjuvant therapy efficacy. ScRNA-seq analysis revealed TLS+ tumors had increased plasma cells, B cells, Th17, Tfh and Th1, and elevated exhausted CD8+ T cells that highly expressed checkpoint molecules and granzymes. Conclusively, MTLSs favored treatment outcome in ESCC patients receiving multiple neoadjuvant therapies. The spatial distribution of MTLSs was associated with multiregional immune status modified by the neoadjuvant therapies.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Terapia Neoadyuvante , Estructuras Linfoides Terciarias , Humanos , Terapia Neoadyuvante/métodos , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/inmunología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
12.
Microb Pathog ; 195: 106887, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39186965

RESUMEN

This study investigated the impact of wheat processing methods (wheat flour vs wheat pellets) on the growth performance, serum biochemical parameters, and rumen microbiome composition in sheep. Results indicated that feeding of wheat flour resulted in significantly higher terminal weight and average daily gain (P < 0.05) and lower cholesterol and ALP04 levels (P < 0.05) in sheep compared to those fed wheat pellets. Analysis of 16s rDNA high-throughput sequencing data revealed significantly higher microbial richness (Chao1 index) in the rumen of sheep fed wheat flour (P < 0.05), even though the phylum-level composition dominated by Firmicutes, Bacteroidetes, and Proteobacteria was similar in both groups of sheep. Notably, sheep fed wheat flour were found to have a significantly higher relative abundance of Bacteroidetes (P < 0.05). At the genus level, Succinivibrionaceae_UCG-001 and Prevotella_1 were significantly more abundant in the rumen of sheep fed wheat flour (P < 0.05). Correlation analysis identified that both terminal weight and average daily gain were positively correlated with ruminal abundance of Bacteroidetes and Prevotella_1, while ALP04 was negatively correlated with the abundance of these taxa. Functional prediction using PICRUSt2 indicated enrichment of pathways related to the ABC-type glycerol-3-phosphate transport system, and periplasmic components in both wheat flour and pellet fed sheep. Overall, these findings suggest that dietary wheat flour modulates rumen microbiota composition, and improves growth performance in sheep.


Asunto(s)
Alimentación Animal , Microbioma Gastrointestinal , ARN Ribosómico 16S , Rumen , Triticum , Animales , Rumen/microbiología , Ovinos , ARN Ribosómico 16S/genética , Colesterol/sangre , Colesterol/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Harina , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación , Prevotella/genética , Prevotella/aislamiento & purificación , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Dieta/veterinaria , Firmicutes/genética , Firmicutes/clasificación , Firmicutes/aislamiento & purificación
13.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129298

RESUMEN

Subsequently to the publication of the above paper, the authors drew to the attention of the Editorial Office that they had assembled the data shown for the cell migration assay experiments in Fig. 4F (on p. 8), incorrectly; essentially, the 'Control' data panel had inadvertently been copied across for the '10 µg/ml' data panel. The revised version of Fig. 4, showing the correct data panel for the '10 µg/ml' experiment in Fig. 4F,  is shown on the next page. Note that the replacement of the erroneous data does not affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this Corrigendum. The authors are grateful to the Editor of Molecular Medicine Reports for granting them this opportunity to publish a Corrigendum, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 27: 88, 2023; DOI: 10.3892/mmr.2023.12975].

14.
J Cancer ; 15(15): 4801-4817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132151

RESUMEN

Capsaicin (CAP) exerts significant anti-tumor effects on a variety of tumors, with low intrinsic toxicity. Cisplatin (DDP) is currently the first-line drug for the treatment of oral cancer; however, its clinical efficacy is impeded by chemoresistance and negligible side effects. Whether the combined use of CAP and DDP has a synergistic antitumor effect on tongue squamous cell carcinoma (TSCC) cells and its underlying mechanisms remains unclear. The present study revealed that CAP reduced the activity of TSCC cells in a dose- and time-dependent manner. We also observed changes in the mitochondrial functional structure of TSCC cells, along with the induction of mitochondrial apoptosis. Moreover, when CAP was combined with DDP, a synergistic cytotoxic effect on TSCC cells was observed, which had a significant impact on inducing apoptosis, inhibiting proliferation, and disrupting the mitochondrial membrane potential in TSCC cells compared to the single-drug treatment and control groups. These effects are associated with TRPV1, a high-affinity CAP receptor. The combined use of CAP and DDP can activate the TRPV1 receptor, resulting in intracellular Ca2+ overload and activation of the calpain pathway, ultimately leading to mitochondrial apoptosis. This potential mechanism was validated in TSCC xenograft models. In conclusion, our findings clearly demonstrate that CAP exerts synergistic pro-apoptotic effects with DDP in TSCC through the calpain pathway mediated by TRPV1. Thus, CAP can be considered an effective adjuvant drug for DDP in the treatment of TSCC.

15.
Biotechnol Bioeng ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210560

RESUMEN

Cryopreservation presents a critical challenge due to cryo-damage, such as crystallization and osmotic imbalances that compromise the integrity of biological tissues and cells. In contrast, various organisms in nature exhibit remarkable freezing tolerance, leveraging complex molecular mechanisms to survive extreme cold. This review explores the adaptive strategies of freeze-tolerant species, including the regulation of specific genes, proteins, and metabolic pathways, to enhance survival in low-temperature environments. We then discuss recent advancements in cryopreservation technologies that aim to mimic these natural phenomena to preserve cellular and tissue integrity. Special focus is given to the roles of glucose metabolism, microRNA expression, and cryoprotective protein modulation in improving cryopreservation outcomes. The insights gained from studying natural antifreeze mechanisms offer promising directions for advancing cryopreservation techniques, with potential applications in medical, agricultural, and conservation fields. Future research should aim to further elucidate these molecular mechanisms to develop more effective and reliable cryopreservation methods.

16.
Cancer Cell Int ; 24(1): 300, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198820

RESUMEN

Tongue squamous cell carcinoma (TSCC) is one of the most common malignant tumors among oral cancers, and its treatment is based on radio-chemotherapy and surgery, which always produces more serious side effects and sequelae. Traditional medicine can compensate for the shortcomings of modern medical treatments and play a better therapeutic role. Currently, active ingredients derived from plants are attracting the attention of researchers and clinical professionals. We examined capsaicin (CAP), an active ingredient isolated from Capsicum annuum (family Solanaceae), and explored the effect of CAP combined with cisplatin (DDP) on epithelial-mesenchymal transition (EMT) and TSCC cells migration. Our results demonstrated that Transforming growth factor-ß1(TGF-ß1) induced EMT and promoted cell migration in TSCC cells. CAP combined with DDP inhibits non-TGF-ß1-induced or TGF-ß1-induced EMT and migration. Mechanistically, the inhibition of non-TGF-ß1-induced EMT and migration by CAP combined with DDP was mediated by the AMPK/mTOR pathway, whereas TGF-ß1-induced EMT and migration were regulated by the Claudin-1/PI3K/AKT/mTOR pathway. A nude lung metastasis mouse model was established for in vivo validation. These results support our hypothesis that the combination of CAP and DDP inhibits TSCC metastasis. These data set the stage for further studies aimed at validating CAP as an effective active ingredient for enhancing chemotherapy efficacy and reducing the dosage and toxicity of chemotherapeutic drugs, ultimately paving the way for translational research and clinical trials for TSCC eradication.

17.
Foods ; 13(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39200507

RESUMEN

Snow Lotus Seed (SLS), esteemed for its nutritional and market value, faces challenges of authentication due to the absence of appropriate testing standards and methods. This results in frequent adulteration of SLS sourced from Gleditsia sinensis (G. sinensis) with other plant seeds endosperm. Traditional chloroplast DNA barcoding methods are inadequate for species identification due to the absence of chloroplasts in G. sinensis seeds endosperm. In this study, the homology of 11 ITS genes among 6 common Gleditsia species was analyzed. Universal primers suitable for these species were designed and screened. A DNA barcoding method for distinguishing SLS species was developed using Sanger sequencing technology, leveraging existing GenBank and Barcode of Life Data System (BOLD) databases. Optimized sample pretreatment facilitated effective DNA extraction from phytopolysaccharide-rich SLS. Through testing of commercial SLS products, the species origin has been successfully identified. Additionally, a novel instance of food fraud was uncovered, where the Caesalpinia spinosa endosperm was used to counterfeit SLS for the first time. The study established that the developed DNA barcoding method is effective for authenticating SLS species. It is of great significance for combating food fraud related to SLS, ensuring food safety, and promoting the healthy development of the SLS industry.

18.
Nanomedicine ; 62: 102782, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179013

RESUMEN

The relief of joint pain is one of the main objectives in the clinical management of arthritis. Although significant strides have been made in improving management of rheumatoid and related forms of inflammatory arthritis, there are still major unmet needs for therapies that selectively provide potent, sustained and safe joint pain relief, especially among patients with osteoarthritis (OA), the most common form of arthritis. We have recently developed ProGel-Dex, an N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug, which forms a hydrogel upon intra-articular administration and provides sustained improvement in pain-related behavior and inflammation in rodent models of arthritis. The focus of the present study was to investigate the impact of ProGel-Dex formulation parameters on its physicochemical properties and in vivo efficacy. The results of this study provide essential knowledge for the future design of ProGel-Dex that can provide more effective, sustained and safe relief of joint pain and inflammation.

19.
J Clin Monit Comput ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158781

RESUMEN

OBJECTIVE: This study aimed to assess the impact of a lung-protective ventilation strategy utilizing transpulmonary driving pressure titrated positive end-expiratory pressure (PEEP) on the prognosis [mechanical ventilation duration, hospital stay, 28-day mortality rate and incidence of ventilator-associated pneumonia (VAP), survival outcome] of patients with Acute Respiratory Distress Syndrome (ARDS). METHODS: A total of 105 ARDS patients were randomly assigned to either the control group (n = 51) or the study group (n = 53). The control group received PEEP titration based on tidal volume [A tidal volume of 6 mL/kg, flow rate of 30-60 L/min, frequency of 16-20 breaths/min, constant flow rate, inspiratory-to-expiratory ratio of 1:1 to 1:1.5, and a plateau pressure ≤ 30-35 cmH2O. PEEP was adjusted to maintain oxygen saturation (SaO2) at or above 90%, taking into account blood pressure], while the study group received PEEP titration based on transpulmonary driving pressure (Esophageal pressure was measured as a surrogate for pleural pressure using an esophageal pressure measurement catheter connected to the ventilator. Tidal volume and PEEP were adjusted based on the observed end-inspiratory and end-expiratory transpulmonary pressures, aiming to maintain a transpulmonary driving pressure below 15 cmH2O during mechanical ventilation. Adjustments were made 2-4 times per day). Statistical analysis and comparison were conducted on lung function indicators [oxygenation index (OI), arterial oxygen tension (PaO2), arterial carbon dioxide tension (PaCO2)] as well as other measures such as heart rate, mean arterial pressure, and central venous pressure in two groups of patients after 48 h of mechanical ventilation. The 28-day mortality rate, duration of mechanical ventilation, length of hospital stay, and ventilator-associated pneumonia (VAP) incidence were compared between the two groups. A 60-day follow-up was performed to record the survival status of the patients. RESULTS: In the control group, the mean age was (55.55 ± 10.51) years, with 33 females and 18 males. The pre-ICU hospital stay was (32.56 ± 9.89) hours. The mean Acute Physiology and Chronic Health Evaluation (APACHE) II score was (19.08 ± 4.67), and the mean Murray Acute Lung Injury score was (4.31 ± 0.94). In the study group, the mean age was (57.33 ± 12.21) years, with 29 females and 25 males. The pre-ICU hospital stay was (33.42 ± 10.75) hours. The mean APACHE II score was (20.23 ± 5.00), and the mean Murray Acute Lung Injury score was (4.45 ± 0.88). They presented a homogeneous profile (all P > 0.05). Following intervention, significant improvements were observed in PaO2 and OI compared to pre-intervention values. The study group exhibited significantly higher PaO2 and OI compared to the control group, with statistically significant differences (all P < 0.05). After intervention, the study group exhibited a significant increase in PaCO2 (43.69 ± 6.71 mmHg) compared to pre-intervention levels (34.19 ± 5.39 mmHg). The study group's PaCO2 was higher than the control group (42.15 ± 7.25 mmHg), but the difference was not statistically significant (P > 0.05). There were no significant differences in hemodynamic indicators between the two groups post-intervention (all P > 0.05). The study group demonstrated significantly shorter mechanical ventilation duration and hospital stay, while 28-day mortality rate and incidence of ventilator-associated pneumonia (VAP) showed no significant differences. Kaplan-Meier survival analysis revealed a significantly better survival outcome in the study group at the 60-day follow-up (HR = 0.565, 95% CI: 0.320-0.999). CONCLUSION: Lung-protective mechanical ventilation using transpulmonary driving pressure titrated PEEP effectively improves lung function, reduces mechanical ventilation duration and hospital stay, and enhances survival outcomes in patients with ARDS. However, further study is needed to facilitate the wider adoption of this approach.

20.
J Colloid Interface Sci ; 677(Pt B): 68-78, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39137564

RESUMEN

Nickel-iron layered double hydroxide (NiFe-LDH) is hindered in its further development in water splitting due to its slow kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, the synthesis of OER (FeO(OH)/NiFe-LDH) and HER (Fe7S8(NiS)/NiFe-LDH) catalysts endowed with inherent electric fields exhibited exceptional electrocatalytic properties. The presence of the built-in electric field modulated the redistribution of electrons within the catalyst, while the formation of a heterostructure preserved the intrinsic characteristics of the catalyst. Moreover, this electron redistribution optimized the catalyst's adsorption of reaction intermediates (O*, OH*, OOH*, and H*) during the catalytic process, thereby enhancing the performance of both OER and HER. The electrolytic cell, equipped with these catalysts, achieved the current density of 10 mA cm-2 at a remarkably low potential of 1.409 V under industrial temperature conditions and demonstrated an ultra-long-term stability of 200 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA