Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 458: 131867, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331061

RESUMEN

Bacteria Acinetobacter baumannii is a persistent issue in hospital-acquired infections due to its fast and potent development of multi-drug resistance. To address this urgent challenge, a novel biomaterial using silver (Ag+) ions within the hydroxyapatite (HAp) lattice has been developed to prevent infections in orthopedic surgery and bone regeneration applications without relying on antibiotics. The aim of the study was to examine the antibacterial activity of mono-substituted HAp with Ag+ ions and a mixture of mono-substituted HAps with Sr2+, Zn2+, Mg2+, SeO32- and Ag+ ions against the A. baumannii. The samples were prepared in the form of powder and disc and analyzed by disc diffusion, broth microdilution method, and scanning electron microscopy. The results from the disc-diffusion method have shown a strong antibacterial efficacy of the Ag-substituted and mixture of mono-substituted HAps (Sr, Zn, Se, Mg, Ag) toward several clinical isolates. The Minimal Inhibitory Concentrations for the powdered HAp samples ranged from 32 to 42 mg/L (Ag+ substituted) and 83-167 mg/L (mixture of mono-substituted), while the Minimal Bactericidal Concentrations after 24 h of contact ranged from 62.5 (Ag+) to 187.5-292 mg/L (ion mixture). The lower substitution level of Ag+ ions in a mixture of mono-substituted HAps was the cause of lower antibacterial effects measured in suspension. However, the inhibition zones and bacterial adhesion on the biomaterial surface were comparable. Overall, the clinical isolates of A. baumannii were effectively inhibited by substituted HAp samples, probably in the same amount as by other commercially available silver-doped materials, and such materials may provide a promising alternative or supplementation to antibiotic treatment in the prevention of infections associated with bone regeneration. The antibacterial activity of prepared samples toward A. baumannii was time-dependent and should be considered in potential applications.


Asunto(s)
Acinetobacter baumannii , Plata/farmacología , Durapatita , Antibacterianos/farmacología , Materiales Biocompatibles , Iones , Pruebas de Sensibilidad Microbiana
2.
Nanomaterials (Basel) ; 12(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500875

RESUMEN

The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.

3.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015686

RESUMEN

Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.

4.
Materials (Basel) ; 15(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35591682

RESUMEN

Increasing attention is focused on developing biomaterials as temporary scaffolds that provide a specific environment and microstructure for bone tissue regeneration. The aim of the present work was to synthesize silicon-doped biomimetic multi-phase composite scaffolds based on bioactive inorganic phases and biocompatible polymers (poly(ε-caprolactone), PCL) using simple and inexpensive methods. Porous multi-phase composite scaffolds from cuttlefish bone were synthesized using a hydrothermal method and were further impregnated with (3-aminopropyl)triethoxysilane 1-4 times, heat-treated (1000 °C) and coated with PCL. The effect of silicon doping and the PCL coating on the microstructure and mechanical and biological properties of the scaffolds has been investigated. Multi-phase scaffolds based on calcium phosphate (hydroxyapatite, α-tricalcium phosphate, ß-tricalcium phosphate) and calcium silicate (wollastonite, larnite, dicalcium silicate) phases were obtained. Elemental mapping revealed homogeneously dispersed silicon throughout the scaffolds, whereas silicon doping increased bovine serum albumin protein adsorption. The highly porous structure of cuttlefish bone was preserved with a composite scaffold porosity of ~78%. A compressive strength of ~1.4 MPa makes the obtained composite scaffolds appropriate for non-load-bearing applications. Cytocompatibility assessment by an MTT assay of human mesenchymal stem cells revealed the non-cytotoxicity of the obtained scaffolds.

5.
Carbohydr Polym ; 277: 118883, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893286

RESUMEN

Ionic substitutions are a promising strategy to enhance the biological performance of calcium phosphates (CaP) and composite materials for bone tissue engineering applications. However, systematic studies have not been performed on multi-substituted organic/inorganic scaffolds. In this work, highly porous composite scaffolds based on CaPs substituted with Sr2+, Mg2+, Zn2+ and SeO32- ions, and chitosan have been prepared by freeze-gelation technique. The scaffolds have shown highly porous structure, with very well interconnected pores and homogeneously dispersed CaPs, and high stability during 28 days in the degradation medium. Osteogenic potential of human mesenchymal stem cells seeded on scaffolds has been determined by histological, immunohistochemical and RT-qPCR analysis of cultured cells in static and dynamic conditions. Results indicated that ionic substitutions have a beneficial effect on cells and tissues. The scaffolds with multi-substituted CaPs have shown increased expression of osteogenesis related markers and increased phosphate deposits, compared to the scaffolds with non-substituted CaPs.


Asunto(s)
Fosfatos de Calcio/farmacología , Quitosano/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Fosfatos de Calcio/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quitosano/química , Humanos , Ingeniería de Tejidos
6.
Materials (Basel) ; 14(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576562

RESUMEN

The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.

7.
Materials (Basel) ; 14(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205736

RESUMEN

The aim of this study was to prepare a biomimetic selenium substituted calcium phosphate system for potential application in osteosarcoma therapy. Calcium phosphate (CaP) systems substituted with selenite ions were prepared by the wet precipitation method, using biogenic CaCO3 (derived from cuttlefish bone), CO(NH2)2-H3PO4, and Na2SeO3·5H2O as reagents. Starting reaction mixtures were prepared based on the formula for selenite-substituted hydroxyapatite, Ca10(PO4)6-x(SeO3)x(OH)2, with Ca/(P + Se) molar ratio of 1.67 and Se/(P + Se) molar ratio of: 0, 0.01, 0.05, and 0.10, respectively. The prepared CaP powders were characterized by Fourier transform infrared spectrometry, elemental analysis, scanning electron microscopy, X-ray powder diffraction analysis and Rietveld refinement studies. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37 °C. The metabolic activity of healthy and osteosarcoma cell lines was assessed by cell cytotoxicity and viability test. The as-prepared powders were composed of calcium-deficient carbonated hydroxyapatite (HAp), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). Along with the selenite substitution, the presence of Sr2+, Na+, and Mg2+ was detected as a result of using cuttlefish bone as a precursor for Ca2+ ions. Inductively coupled plasma mass spectrometry analysis showed that the Se/(P + Se) molar ratios of selenite substituted powders are lower than the nominal ratios. Heat treated powders were composed of HAp, α-tricalcium phosphate (α-TCP) and ß-tricalcium phosphate (ß-TCP). Doping CaP structure with selenite ions improves the thermal stability of HAp. The powder with the Se/(P + Se) molar ratio of 0.007 showed selective toxicity to cancer cells.

8.
J Biomed Mater Res B Appl Biomater ; 108(4): 1697-1709, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31738012

RESUMEN

Biomimetic triphasic strontium-substituted calcium phosphate (CaP) powders were prepared by wet precipitation method at 50°C, using CaCO3 , (NH2 )2 COH3 PO4 , and Sr(NO3 )2 as reagents. Calcite was prepared from biogenic source (cuttlefish bone). The synthesized powders have been characterized by elemental analysis, Fourier transform infrared spectrometry, X-ray diffraction, Rietveld refinement studies and cell viability test. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37°C. The raw precipitated powders were composed of calcium deficient carbonated hydroxyapatite (HA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). After heat treatment at 1200°C ß-tricalcium phosphate (ß-TCP) was detected. Strontium substitution for calcium results in an increase of lattice parameters in HA, OCP, and ß-TCP. Sr2+ occupy the Ca(1) site in HA, Ca(3,4,7,8) sites in OCP and Ca(1,2,3,4) sites in ß-TCP. Along with Sr2+ substitution, presence of Mg2+ and Na+ ions was detected as a result of using biogenic calcium carbonate. The culture of human embryonic kidney cells indicated noncytotoxicity of the prepared CaP powders with emphasis on the cell proliferation during 3 days of culture.


Asunto(s)
Materiales Biomiméticos , Huesos/química , Fosfatos de Calcio/química , Decapodiformes/química , Ensayo de Materiales , Estroncio/química , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células HEK293 , Humanos
9.
Carbohydr Polym ; 197: 469-477, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30007636

RESUMEN

Injectable hydrogels have emerged as promising biomaterials for tissue engineering applications. The goal of this study was to evaluate the potential of a pH-responsive chitosan-hydroxyapatite hydrogel to be used as a three-dimensional support for encapsulated mesenchymal stem cells (MSCs) osteogenic differentiation. In vitro enzymatic degradation of the hydrogel, during 28 days of incubation, in simulated physiological condiditons, was characterized by swelling measurements, molecular weight determination and SEM analysis of hydrogel microstructure. Osteogenic differentiation of encapsulated MSCs was confirmed by osteogenic Runx2, collagen type I and osteocalcin immunostaining and alkaline phosphatase quantification. The deposition of late osteogenic markers (calcium phosphates) detected by Alizarin red and von Kossa staining indicated an extracellular matrix mineralization.


Asunto(s)
Quitosano/farmacología , Durapatita/farmacología , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quitosano/administración & dosificación , Durapatita/administración & dosificación , Hidrogeles/administración & dosificación , Inyecciones , Peso Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Porcinos
10.
Carbohydr Polym ; 166: 173-182, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28385221

RESUMEN

The development of bioactive injectable system as cell carrier with minimal impact on viability of encapsulated cells represents a great challenge. In the present work, we propose a new pH-responsive chitosan-hydroxyapatite-based hydrogel with sodium bicarbonate (NaHCO3) as the gelling agent. The in situ synthesis of hydroxyapatite phase has resulted in stable composite suspension and final homogeneous hydrogel. The application of sodium bicarbonate has allowed non-cytotoxic fast gelation of chitosan-hydroxyapatite within 4min, and without excess of sodium ions concentration. Rheological properties of crosslinked hydrogel have demonstrated possible behaviour as 'strong physical hydrogel'. The live dead staining has confirmed good viability and dispersion, as well as proliferation of encapsulated cells by the culture time. Presented preliminary results show good potential of chitosan-hydroxyapatite/NaHCO3 as a cell carrier, whose impact on the cell differentiation need to be confirmed by encapsulation of other cell phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA