Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Brain Res ; 242(8): 1947-1955, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38910159

RESUMEN

Several studies have aimed at identifying biomarkers in the initial phases of Alzheimer's disease (AD). Conversely, texture features, such as those from gray-level co-occurrence matrices (GLCMs), have highlighted important information from several types of medical images. More recently, texture-based brain networks have been shown to provide useful information in characterizing healthy individuals. However, no studies have yet explored the use of this type of network in the context of AD. This work aimed to employ texture brain networks to investigate the distinction between groups of patients with amnestic mild cognitive impairment (aMCI) and mild dementia due to AD, and a group of healthy subjects. Magnetic resonance (MR) images from the three groups acquired at two instances were used. Images were segmented and GLCM texture parameters were calculated for each region. Structural brain networks were generated using regions as nodes and the similarity among texture parameters as links, and graph theory was used to compute five network measures. An ANCOVA was performed for each network measure to assess statistical differences between groups. The thalamus showed significant differences between aMCI and AD patients for four network measures for the right hemisphere and one network measure for the left hemisphere. There were also significant differences between controls and AD patients for the left hippocampus, right superior parietal lobule, and right thalamus-one network measure each. These findings represent changes in the texture of these regions which can be associated with the cortical volume and thickness atrophies reported in the literature for AD. The texture networks showed potential to differentiate between aMCI and AD patients, as well as between controls and AD patients, offering a new tool to help understand these conditions and eventually aid early intervention and personalized treatment, thereby improving patient outcomes and advancing AD research.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Anciano de 80 o más Años , Procesamiento de Imagen Asistido por Computador/métodos
2.
Brain Behav ; 13(2): e2863, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36601694

RESUMEN

The causes of the neurodegenerative processes in Alzheimer's disease (AD) are not completely known. Recent studies have shown that white matter (WM) damage could be more severe and widespread than whole-brain cortical atrophy and that such damage may appear even before the damage to the gray matter (GM). In AD, Amyloid-beta (Aß42 ) and tau proteins could directly affect WM, spreading across brain networks. Since hippocampal atrophy is common in the early phase of disease, it is reasonable to expect that hippocampal volume (HV) might be also related to WM integrity. Our study aimed to evaluate the integrity of the whole-brain WM, through diffusion tensor imaging (DTI) parameters, in mild AD and amnestic mild cognitive impairment (aMCI) due to AD (with Aß42 alteration in cerebrospinal fluid [CSF]) in relation to controls; and possible correlations between those measures and the CSF levels of Aß42 , phosphorylated tau protein (p-Tau) and total tau (t-Tau). We found a widespread WM alteration in the groups, and we also observed correlations between p-Tau and t-Tau with tracts directly linked to mesial temporal lobe (MTL) structures (fornix and hippocampal cingulum). However, linear regressions showed that the HV better explained the variation found in the DTI measures (with weak to moderate effect sizes, explaining from 9% to 31%) than did CSF proteins. In conclusion, we found widespread alterations in WM integrity, particularly in regions commonly affected by the disease in our group of early-stage disease and patients with Alzheimer's disease. Nonetheless, in the statistical models, the HV better predicted the integrity of the MTL tracts than the biomarkers in CSF.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Imagen de Difusión Tensora , Encéfalo/patología , Biomarcadores/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Atrofia/patología , Disfunción Cognitiva/metabolismo
3.
Neuroradiology ; 64(1): 141-150, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34278511

RESUMEN

PURPOSE: Default mode network (DMN) has emerged as a potential biomarker of Alzheimer's disease (AD); however, it is not clear whether it can differentiate amnestic mild cognitive impairment with altered amyloid (aMCI-Aß +) who will evolve to AD. We evaluated if structural and functional connectivity (FC), hippocampal volumes (HV), and cerebrospinal fluid biomarkers (CSF-Aß42, p-Tau, and t-Tau) can differentiate aMCI-Aß + converters from non-converters. METHODS: Forty-eight individuals (18 normal controls and 30 aMCI subjects in the AD continuum - with altered Aß42 in the CSF) were followed up for an average of 13 months. We used MultiAtlas, UF2C, and Freesurfer software to evaluate diffusion tensor imaging, FC, and HV, respectively, INNOTEST® kits to measure CSF proteins, and neuropsychological tests. Besides, we performed different MANOVAs with further univariate analyses to differentiate groups. RESULTS: During follow-up, 8/30 aMCI-Aß + converted (26.6%) to AD dementia. There were no differences in multivariate analysis between groups in CSF biomarkers (p = 0.092) or at DMN functional connectivity (p = 0.814). aMCI-Aß + converters had smaller right HV than controls (p = 0.013), and greater right cingulum parahippocampal bundle radial diffusivity than controls (p < 0.001) and non-converters (p = 0.036). CONCLUSION: In this exploratory study, structural, but not functional, DMN connectivity alterations may differentiate aMCI-Aß + subjects who converted to AD dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo , Disfunción Cognitiva/diagnóstico por imagen , Red en Modo Predeterminado , Imagen de Difusión Tensora , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
4.
Front Aging Neurosci ; 10: 255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186154

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, with no means of cure or prevention. The presence of abnormal disease-related proteins in the population is, in turn, much more common than the incidence of dementia. In this context, the cognitive reserve (CR) hypothesis has been proposed to explain the discontinuity between pathophysiological and clinical expression of AD, suggesting that CR mitigates the effects of pathology on clinical expression and cognition. fMRI studies of the human connectome have recently reported that AD patients present diminished functional efficiency in resting-state networks, leading to a loss in information flow and cognitive processing. No study has investigated, however, whether CR modifies the effects of the pathology in functional network efficiency in AD patients. We analyzed the relationship between CR, pathophysiology and network efficiency, and whether CR modifies the relationship between them. Fourteen mild AD, 28 amnestic mild cognitive impairment (aMCI) due to AD, and 28 controls were enrolled. We used education to measure CR, cerebrospinal fluid (CSF) biomarkers to evaluate pathophysiology, and graph metrics to measure network efficiency. We found no relationship between CR and CSF biomarkers; CR was related to higher network efficiency in all groups; and abnormal levels of CSF protein biomarkers were related to more efficient networks in the AD group. Education modified the effects of tau-related pathology in the aMCI and mild AD groups. Although higher CR might not protect individuals from developing AD pathophysiology, AD patients with higher CR are better able to cope with the effects of pathology-presenting more efficient networks despite pathology burden. The present study highlights that interventions focusing on cognitive stimulation might be useful to slow age-related cognitive decline or dementia and lengthen healthy aging.

5.
Alzheimers Dement (N Y) ; 4: 473-480, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258976

RESUMEN

Introduction: Information about how physical exercise affects patients with amnestic mild cognitive impairment (aMCI) due to Alzheimer's disease (AD) is still missing. This study evaluated the impact of multicomponent exercise training on cognition and brain structure in aMCI subjects with cerebral spinal fluid positive AD biomarkers. Methods: Forty aMCI subjects were divided in training (multicomponent exercise thrice a week for 6 months) and nontraining groups. Assessments included cardiorespiratory fitness, neurocognitive tests, and a structural magnetic resonance imaging using 3.0 T scanner. FreeSurfer software analyzed hippocampal volume and cortical thickness. Results: The training group showed increased volume in both hippocampi and better performance in episodic memory test after 6 months. In contrast, the nontraining group declined in functional activities, recognition, and cardiorespiratory fitness for the same period. Discussion: Multicomponent exercise seems to improve hippocampal volume and episodic memory, and maintains VO2max in aMCI due to AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA