Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39040645

RESUMEN

Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3× dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.

2.
Proc Natl Acad Sci U S A ; 121(31): e2401246121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052832

RESUMEN

Modern science is dependent on imaging on the nanoscale, often achieved through processes that detect secondary electrons created by a highly focused incident charged particle beam. Multiple types of measurement noise limit the ultimate trade-off between the image quality and the incident particle dose, which can preclude useful imaging of dose-sensitive samples. Existing methods to improve image quality do not fundamentally mitigate the noise sources. Furthermore, barriers to assigning a physically meaningful scale make the images qualitative. Here, we introduce ion count-aided microscopy (ICAM), which is a quantitative imaging technique that uses statistically principled estimation of the secondary electron yield. With a readily implemented change in data collection, ICAM substantially reduces source shot noise. In helium ion microscopy, we demonstrate 3[Formula: see text] dose reduction and a good match between these empirical results and theoretical performance predictions. ICAM facilitates imaging of fragile samples and may make imaging with heavier particles more attractive.

4.
Adv Mater ; 34(43): e2205055, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36026556

RESUMEN

The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead-halide perovskite field-effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor-phase epitaxy technique that results in large-area single-crystalline cesium lead bromide (CsPbBr3 ) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin-film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap-free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall-effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2 V-1 s-1 at room temperature to ≈250 cm2 V-1 s-1 at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon-limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high-performance perovskite electronic devices.

5.
Sci Rep ; 12(1): 3794, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260703

RESUMEN

SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.


Asunto(s)
Microscopía/métodos , SARS-CoV-2/fisiología , Internalización del Virus , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/transmisión , COVID-19/virología , Chlorocebus aethiops , Citoplasma/química , Citoplasma/ultraestructura , Citoplasma/virología , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Células Gigantes/química , Células Gigantes/fisiología , Helio/química , Humanos , Iones/química , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA