Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 4091, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374232

RESUMEN

In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.


Asunto(s)
Metformina , Células Precursoras de Oligodendrocitos , Células Precursoras de Oligodendrocitos/metabolismo , Clemastina , Receptores de N-Metil-D-Aspartato/metabolismo , Metformina/farmacología , Metformina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología
3.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
4.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37652017

RESUMEN

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Humanos , Ratones , Astrocitos , Ingestión de Alimentos , Sinapsis
5.
Front Cell Dev Biol ; 10: 968341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247014

RESUMEN

Focalised hypoxia is widely prevalent in diseases such as stroke, cardiac arrest, and dementia. While in some cases hypoxia improves cellular functions, it mostly induces or exacerbates pathological changes. The lack of methodologies that can simulate focal acute hypoxia, in either animal or cell culture, impedes our understanding of the cellular consequences of hypoxia. To address this gap, an electrochemical localised oxygen scavenging system (eLOS), is reported, providing an innovative platform for spatiotemporal in vitro hypoxia modulation. The electrochemical system is modelled showing O2 flux patterns and localised O2 scavenging and hypoxia regions, as a function of distance from the electrode and surrounding flux barriers, allowing an effective focal hypoxia tool to be designed for in vitro cell culture study. O2 concentration is reduced in an electrochemically defined targeted area from normoxia to hypoxia in about 6 min depending on the O2-flux boundaries. As a result, a cell culture-well was designed, where localised O2 scavenging could be induced. The impact of localised hypoxia was demonstrated on human neural progenitor cells (hNPCs) and it was shown that miniature focal hypoxic insults can be induced, that evoke time-dependent HIF-1α transcription factor accumulation. This transcription is "patterned" across the culture according to the electrochemically induced spatiotemporal hypoxia gradient. A basic lacunar infarct model was also developed through the application of eLOS in a purpose designed microfluidic device. Miniature focal hypoxic insults were induced in cellular processes of fully oxygenated cell bodies, such as the axons of human cortical neurons. The results demonstrate experimentally that localised axonal hypoxic stress can lead to significant increase of neuronal death, despite the neurons remaining at normoxia. This suggests that focal hypoxic insult to axons alone is sufficient to impact surrounding neurons and may provide an in vitro model to study the impact of microinfarcts occurring in the deep cerebral white matter, as well as providing a promising tool for wider understanding of acute hypoxic insults with potential to uncover its pathophysiology in multiple diseases.

6.
Nat Commun ; 13(1): 2844, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606347

RESUMEN

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Células Neuroepiteliales , Diferenciación Celular/fisiología , Corteza Cerebral , Humanos , Células Madre , Telencéfalo
7.
Neuroscientist ; 28(2): 144-162, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33567971

RESUMEN

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Axones/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula , Sistema Nervioso Central , Humanos , Vaina de Mielina/fisiología , Oligodendroglía/metabolismo
8.
J Comp Neurol ; 530(6): 871-885, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599848

RESUMEN

Myelination allows for the regulation of conduction velocity, affecting the precise timing of neuronal inputs important for the development and function of brain circuits. In turn, myelination may be altered by changes in experience, neuronal activity, and vesicular release, but the links between sensory experience, corresponding neuronal activity, and resulting alterations in myelination require further investigation. We thus studied the development of myelination in the Xenopus laevis tadpole, a classic model for studies of visual system development and function because it is translucent and visually responsive throughout the formation of its retinotectal system. We begin with a systematic characterization of the timecourse of early myelin ensheathment in the Xenopus retinotectal system using immunohistochemistry of myelin basic protein (MBP) along with third harmonic generation (THG) microscopy, a label-free structural imaging technique. Based on the mid-larval developmental progression of MBP expression in Xenopus, we identified an appropriate developmental window in which to assess the effects of early temporally patterned visual experience on myelin ensheathment. We used calcium imaging of axon terminals in vivo to characterize the responses of retinal ganglion cells over a range of stroboscopic stimulation frequencies. Strobe frequencies that reliably elicited robust versus dampened calcium responses were then presented to animals for 7 d, and differences in the amount of early myelin ensheathment at the optic chiasm were subsequently quantified. This study provides evidence that it is not just the presence but also to the specific temporal properties of sensory stimuli that are important for myelin plasticity.


Asunto(s)
Larva/crecimiento & desarrollo , Vaina de Mielina/fisiología , Retina/crecimiento & desarrollo , Techo del Mesencéfalo/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Animales , Proteína Básica de Mielina/metabolismo , Células Ganglionares de la Retina/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Front Cell Dev Biol ; 10: 1118466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684444

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2022.968341.].

10.
Nat Neurosci ; 24(11): 1508-1521, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711959

RESUMEN

Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.


Asunto(s)
Encéfalo/fisiología , Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sustancia Blanca/fisiología , Animales , Encéfalo/citología , Humanos , Oligodendroglía/fisiología , Sustancia Blanca/citología
11.
Science ; 374(6569): eaba6905, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34618550

RESUMEN

The brain is responsive to an ever-changing environment, enabling the organism to learn and change behavior accordingly. Efforts to understand the underpinnings of this plasticity have almost exclusively focused on the functional and underlying structural changes that neurons undergo at neurochemical synapses. What has received comparatively little attention is the involvement of activity-dependent myelination in such plasticity and the functional output of circuits controlling behavior. The traditionally held view of myelin as a passive insulator of axons is changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. We review the nascent evidence of the functional role of myelin plasticity in strengthening circuit functions that underlie learning and behavior.


Asunto(s)
Encéfalo/fisiología , Aprendizaje , Memoria , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Animales , Axones/fisiología , Diferenciación Celular , Proliferación Celular , Sustancia Gris/fisiología , Humanos , Actividad Motora , Conducción Nerviosa , Plasticidad Neuronal , Células Precursoras de Oligodendrocitos/fisiología , Sustancia Blanca/fisiología
12.
Cell Rep ; 36(2): 109362, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260928

RESUMEN

The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.


Asunto(s)
Diferenciación Celular , Eminencia Media/citología , Red Nerviosa/fisiología , Fenómenos Fisiológicos de la Nutrición , Oligodendroglía/citología , Adulto , Animales , Linaje de la Célula , Proliferación Celular , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Oligodendroglía/ultraestructura , Análisis de la Célula Individual , Transcriptoma/genética
13.
STAR Protoc ; 2(2): 100439, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33899020

RESUMEN

Single-cell electrophysiological recordings combined with dye loading and immunohistochemistry provide unparalleled single-cell resolution of cell physiology, morphology, location, and protein expression. When correlated with bulk RNA sequencing, these data can define cell identity and function. Here, we describe a protocol to prepare acute brain slices from embryonic and postnatal mice for whole-cell patch clamp, dye loading and post-hoc immunohistochemistry, and cell isolation for bulk RNA sequencing. While we focus on oligodendrocyte precursor cells, this protocol is applicable to other brain cells. For complete details on the use and execution of this protocol, please refer to Spitzer et al. (2019).


Asunto(s)
Encéfalo , Inmunohistoquímica/métodos , Técnicas de Placa-Clamp/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones
14.
Semin Cell Dev Biol ; 116: 10-15, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293232

RESUMEN

Neuron-glial interactions shape neural circuit establishment, refinement and function. One of the key neuron-glial interactions takes place between axons and oligodendroglial precursor cells. Interactions between neurons and oligodendrocyte precursor cells (OPCs) promote OPC proliferation, generation of new oligodendrocytes and myelination, shaping myelin development and ongoing adaptive myelin plasticity in the brain. Communication between neurons and OPCs can be broadly divided into paracrine and synaptic mechanisms. Following the Nobel mini-symposium "The Dark Side of the Brain" in late 2019 at the Karolinska Institutet, this mini-review will focus on the bright and dark sides of neuron-glial interactions and discuss paracrine and synaptic interactions between neurons and OPCs and their malignant counterparts.


Asunto(s)
Vaina de Mielina/fisiología , Neuroglía/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Humanos
15.
Front Cell Neurosci ; 14: 156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595455

RESUMEN

Plasticity in the central nervous system (CNS) allows for responses to changing environmental signals. While the majority of studies on brain plasticity focus on neuronal synapses, myelin plasticity has now begun to emerge as a potential modulator of neuronal networks. Oligodendrocytes (OLs) produce myelin, which provides fast signal transmission, allows for synchronization of neuronal inputs, and helps to maintain neuronal function. Thus, myelination is also thought to be involved in learning. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. This process is orchestrated by numerous cellular and molecular signals, such as axonal diameter, growth factors, extracellular signaling molecules, and neuronal activity. However, the relative importance of, and cooperation between, these signaling pathways is currently unknown. In this review, we focus on the current knowledge about myelin plasticity in the CNS. We discuss new insights into the link between this type of plasticity, learning and behavior, as well as mechanistic aspects of myelin formation that may underlie myelin plasticity, highlighting OPC diversity in the CNS.

16.
Cell Stem Cell ; 26(5): 617-619, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386552

RESUMEN

Regenerative medicines that promote remyelination in multiple sclerosis (MS) are making the transition from laboratory to clinical trials. While animal models provide the experimental flexibility to analyze mechanisms of remyelination, here we discuss the challenges in understanding where and how remyelination occurs in MS.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Modelos Animales , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina , Oligodendroglía , Medicina Regenerativa
17.
Methods Mol Biol ; 1936: 141-168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820898

RESUMEN

The whole-cell configuration of the patch-clamp technique is widely used to study electrically active cells and passive membrane properties, as well as the properties and pharmacology of ion channels, neurotransmitter receptors, and electrogenic transporters, in almost any cell type. In the brain, in addition to neurons, oligodendrocyte precursor cells (OPCs) that give rise to myelinating oligodendrocytes (OLs) are also excitable. Electrophysiological techniques provide the main tool for the thorough investigation of the electrogenic capacity of such cell types. Although there are many published protocols for whole-cell recordings, there are very few that touch upon the electrophysiological characteristics of oligodendrocyte lineage cells. Here we provide a detailed methodology for how to acquire and analyze whole-cell recordings from excitable cells, with a focus on oligodendrocyte lineage cells. We provide a protocol on how to successfully identify OPCs and OLs in brain slices, either with the use of transgenic animal models or through morphological and electrophysiological profiling. The method described can also be easily adopted for whole-cell recordings from oligodendrocyte lineage cells in vitro.


Asunto(s)
Encéfalo/citología , Oligodendroglía/citología , Animales , Linaje de la Célula , Fenómenos Electrofisiológicos , Ratones , Técnicas de Placa-Clamp , Ratas , Células Madre/citología
18.
Neurosci Lett ; 703: 139-144, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30904575

RESUMEN

Brain tissue undergoes substantial activity-dependent reorganisation after stroke due to neuronal plasticity, leading to partial functional recovery in patients. Concurrent myelin repair is crucial for proper neuronal network function and reorganisation. Myelin repair after stroke might occur as myelin plasticity or as remyelination through the recruitment and differentiation of oligodendrocyte precursor cells (OPCs), which become myelin-forming oligodendrocytes (OLs). These two processes might share a similar guiding mechanism, which is postulated to depend on neuronal activity and glutamate signaling to OPCs. However, with ageing, the ability of OPCs to differentiate into myelinating OLs decreases due to changes in their ion channel and neurotransmitter receptor expression profile, rendering them less sensitive to neuronal activity. Because of their unique ability to replace damaged OLs, OPCs represent a potential therapeutic target for myelin repair in the context of stroke.


Asunto(s)
Vaina de Mielina/fisiología , Neuronas/fisiología , Accidente Cerebrovascular/patología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Células-Madre Neurales/patología , Plasticidad Neuronal , Oligodendroglía/patología , Accidente Cerebrovascular/fisiopatología
19.
Neuron ; 101(3): 459-471.e5, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30654924

RESUMEN

Oligodendrocyte progenitor cells (OPCs), which differentiate into myelinating oligodendrocytes during CNS development, are the main proliferative cells in the adult brain. OPCs are conventionally considered a homogeneous population, particularly with respect to their electrophysiological properties, but this has been debated. We show, by using single-cell electrophysiological recordings, that OPCs start out as a homogeneous population but become functionally heterogeneous, varying both within and between brain regions and with age. These electrophysiological changes in OPCs correlate with the differentiation potential of OPCs; thus, they may underlie the differentiational differences in OPCs between regions and, likewise, differentiation failure with age.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Potenciales de Acción , Animales , Encéfalo/citología , Células Cultivadas , Femenino , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Front Cell Neurosci ; 12: 428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519159

RESUMEN

Precise timing of neuronal inputs is crucial for brain circuit function and development, where it contributes critically to experience-dependent plasticity. Myelination therefore provides an important adaptation mechanism for vertebrate circuits. Despite its importance to circuit activity, the interplay between neuronal activity and myelination has yet to be fully elucidated. In recent years, significant attention has been devoted to uncovering and explaining the phenomenon of white matter (WM) plasticity. Here, we summarize some of the critical evidence for modulation of the WM by neuronal activity, ranging from human diffusion tensor imaging (DTI) studies to experiments in animal models. These experiments reveal activity-dependent changes in the differentiation and proliferation of the oligodendrocyte lineage, and in the critical properties of the myelin sheaths. We discuss the implications of such changes for synaptic function and plasticity, and present the underlying mechanisms of neuron-glia communication, with a focus on glutamatergic signaling and the axomyelinic synapse. Finally, we examine evidence that myelin plasticity may be subject to critical periods. Taken together, the present review aims to provide insights into myelination in the context of brain circuit formation and function, emphasizing the bidirectional interplay between neurons and myelinating glial cells to better inform future investigations of nervous system plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA