Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158103

RESUMEN

We report surprising results for the self-assembly of lecithin (a common phospholipid) in water-ethanol mixtures. Lecithin forms vesicles (∼100 nm diameter) in water. These vesicles are transformed into small micelles (∼5 nm diameter) by a variety of destabilizing agents such as single-tailed surfactants and alcohols. In a surfactant-induced vesicle-micelle transition (VMT), vesicles steadily convert to micelles upon adding the surfactant─thereby, the turbidity of the solution drops monotonically. Instead, when an alcohol like ethanol is added to lecithin vesicles, we find a new, distinctive pattern in phase behavior as the ethanol fraction feth in water is increased. The turbidity first decreases (from feth = 0 to 37%), then rises sharply (feth = 37 to 50%), and then eventually decreases again (feth > 55%). Concomitant with the turbidity rise, the vesicles separate into two phases around feth = 50% before a single phase reappears at higher feth─in other words, there is a "re-entrant" phase transition from 1-phase to 2-phase and back to 1-phase with increasing feth. Vesicles near the phase boundary (∼feth = 45%) also show a VMT upon heating. Similar patterns are seen with other alcohols such as methanol and propanol. We ascribe these complex trends to the dual role played by alcohols: (a) first, alcohols reduce the propensity for flat lipid bilayers to bend and form closed spherical vesicles; and (b) second, alcohols diminish the tendency of lipids to self-assemble in the solvent mixture. At low alcohol fractions, (a) dominates, causing the initially unilamellar vesicles to grow into multilamellar vesicles (MLVs), which eventually phase-separate. Thereafter, (b) dominates, and the vesicles convert into micelles. Support for our hypothesis comes from scattering (SANS) and microscopy (cryo-TEM). Thus, we have uncovered a general paradigm for lipid self-assembly in solvent mixtures, and this may even have physiological relevance.

2.
ACS Cent Sci ; 10(3): 695-707, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559296

RESUMEN

We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as hard-soft electroadhesion or EA[HS]. Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, EA[HS] can be reversed by reapplying the field with reversed polarity. Adhesion via EA[HS] to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that EA[HS] arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. EA[HS] can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, EA[HS] can even be achieved underwater, where typical adhesives cannot be used.

3.
ACS Appl Mater Interfaces ; 16(7): 9201-9209, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329464

RESUMEN

Many applications of hydrogels rely on their ability to deliver encapsulated solutes, such as drugs; however, small hydrophilic solutes rapidly leak out of gels by diffusion. A need exists for a way to regulate solute release out of gels─to ensure zero release until a desired time (the OFF state) and thereafter for the release to be switched ON at a high rate. This should ideally be a repeatable switch; i.e., the gel should be cyclable repeatedly between the ON and OFF states. Such perfect, cyclical ON-OFF release of solutes from gels is demonstrated for the first time through a "smart skin" that is synthesized rapidly (in ∼10 min) around an entire gel. The thin (∼100 µm) and transparent polymer skin is endowed with redox-responsive properties through the use of urethane and acrylate monomers, one of which contains a thioether group. Initially, the skin is hydrophobic (water contact angle 102°), and it completely prevents hydrophilic solutes from leaking out of the gel. When contacted with oxidants such as hydrogen peroxide (H2O2), the thioethers are converted to sulfoxides, making the skin hydrophilic (water contact angle 42°) and thereby turning ON the release of solutes. Conversely, solute release can be turned OFF subsequently by adding a reducing agent such as vitamin C that reverts the sulfoxides to thioethers and thus returns the skin to its hydrophobic state. The release rate in the ON state can be tuned via the skin thickness as well as the oxidant concentration. The ability to regulate solute delivery from gels using smart skins is likely to prove significant in areas ranging from separations to agriculture and drug delivery.


Asunto(s)
Hidrogeles , Peróxido de Hidrógeno , Hidrogeles/química , Soluciones , Agua/química , Sulfuros , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA