Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248021

RESUMEN

In this study, we explored and optimized a MW-enhanced divergent approach for the synthesis of 2-substituted benzofurans and chromenes, starting from seventeen substituted o-propargylphenols characterized by a monoaryl substitution on the propargylic sp3 carbon. Firstly, we developed a robust platform for the preparation of a library of o-propargylphenols. Under basic conditions, o-propargylphenols reacted regioselectively to yield benzofurans in yields ranging from 43% to 100%. Conversely, under cationic gold catalysis, we were able to obtain the corresponding 4H-chromenes, albeit in more variable yields (from 25% to 93%) and slightly lower regioselectively. We also proposed plausible mechanisms to explain the divergent outcomes observed. Our findings underscore the potential of diversity-oriented synthesis in the investigation of molecular complexity. Our neglected o-propargylphenols have proven to be versatile and strategic starting materials for accessing oxygen-containing heterocyclic scaffolds through intramolecular cyclization reactions.

2.
J Pept Sci ; : e3630, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943521

RESUMEN

Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.

3.
EMBO J ; 42(14): e112168, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37260169

RESUMEN

All bacterial cells must expand their envelopes during growth. The main load-bearing and shape-determining component of the bacterial envelope is the peptidoglycan cell wall. Bacterial envelope growth and shape changes are often thought to be controlled through enzymatic cell wall insertion. We investigated the role of cell wall insertion for cell shape changes during cell elongation in Gram-negative bacteria. We found that both global and local rates of envelope growth of Escherichia coli remain nearly unperturbed upon arrest of cell wall insertion-up to the point of sudden cell lysis. Specifically, cells continue to expand their surface areas in proportion to biomass growth rate, even if the rate of mass growth changes. Other Gram-negative bacteria behave similarly. Furthermore, cells plastically change cell shape in response to differential mechanical forces. Overall, we conclude that cell wall-cleaving enzymes can control envelope growth independently of synthesis. Accordingly, the strong overexpression of an endopeptidase leads to transiently accelerated bacterial cell elongation. Our study demonstrates that biomass growth and envelope forces can guide cell envelope expansion through mechanisms that are independent of cell wall insertion.


Asunto(s)
Pared Celular , Escherichia coli , Pared Celular/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Ciclo Celular , Bacterias Gramnegativas/metabolismo , Peptidoglicano/metabolismo
4.
Chem Commun (Camb) ; 59(22): 3281-3284, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36825660

RESUMEN

A redox umpolung strategy for the synthesis of complex tetrahydrocarbazoles is reported. The reaction involves a visible light promoted radical cation [4+2] cycloaddition between 2-vinylindoles and conjugated alkenes that proceeds with good yields and diastereoselectivity.

5.
Org Biomol Chem ; 20(41): 8065-8070, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36200334

RESUMEN

Several isocoumarins have been synthesised in good to excellent yields starting from 2-alkynylbenzoates and arenediazonium salts. The strategy involves a domino arylation/oxo-cyclization catalysed by a dual photoredox/gold catalytic system. The reactions run under mild conditions at room temperature in wet acetonitrile under irradiation with a blue-LED lamp, in the presence of a cationic gold catalyst and a cheap organic photocatalyst. The scope is quite broad and allows the preparation of isocoumarins differently disubstituted in positions 3 and 4. A plausible reaction mechanism is proposed.


Asunto(s)
Isocumarinas , Sales (Química) , Ciclización , Oro , Acetonitrilos
6.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080699

RESUMEN

Thermogelling amphiphilic block copolymers have been widely investigated in the development of pharmaceutical drug carriers. In particular, thermosensitive gels based on poloxamer 407 (P407) have great potential for periodontal disease treatment, thanks to their ability to be liquid at room temperature and become viscous gels at body temperature. However, some problems, related to short in situ residence time, reduce their feasible clinical use. Thus, in order to improve the effective applicability of these materials, we studied how P407 thermogels are affected by the pH and by the inclusion of different hydrophilic polymers, used as excipients for increasing the gel stiffness. For this scope, a complete chemical-physical characterization of the synthesized gels is provided, in terms of determination of sol-gel transition temperature, viscosity and erosion degree. The data are correlated according to a statistical multivariate approach based on Principal Component Analysis and their mucoadhesion properties are also tested by Tapping mode-Atomic Force Microscopy (TM-AFM) imaging. Finally, we studied how the different P407 formulations are able to influence the release pathway of two antibacterial drugs (i.e., chlorhexidine digluconate and doxycycline hyclate) largely used in oral diseases.

7.
Soft Matter ; 18(34): 6443-6452, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35983789

RESUMEN

Biological methods for mosquito larvae control are completely biodegradable and have null or limited effects on nontarget organisms. However, commercially available products have a low residual activity, with the consequent need for multiple applications that inevitably increase costs and the risk of resistance phenomena insurgence. Smart delivery systems made of hydrogels proved their efficacy in increasing the action duration of biolarvicides up to several months, but the lack of an efficient baiting mechanism to strongly attract the target pest remains a problem in practical applications. In this work, we investigated two novel hydrogel-based formulations of completely natural composition for baiting and killing larvae of Aedes albopictus mosquitos. The proposed materials consist of charged crosslinked polysaccharides (chitosan and cellulose) and are specifically manufactured to float in water, simulating organic matter usually present at breeding sites. Within the hydrogels' matrix, yeast colonies of Saccharomyces cerevisiae were embedded as phagostimulants alongside a biolarvicide (Bacillus thuringiensis var. israelensis (Bti)). Despite the similar chemical nature and structure, chitosan-based hydrogels exhibited a markedly superior baiting potential compared to those made of cellulose and also succeeded in efficiently killing mosquito larvae just after a few hours from administration. We are confident that the proposed smart delivery hydrogel made of chitosan can be an enabling tool to attract mosquito larvae towards biopesticides of different nature without delocalizing active ingredients away from the breeding site and to simultaneously increase their residual activity, thus holding the potential of minimizing environmental pollution related to pest control and vector-borne disease prevention.


Asunto(s)
Aedes , Quitosano , Animales , Celulosa , Quitosano/farmacología , Hidrogeles/farmacología , Larva , Control de Mosquitos/métodos , Mosquitos Vectores , Control Biológico de Vectores/métodos
8.
Gels ; 8(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448105

RESUMEN

The development of Fricke gel (FG) dosimeters based on poly(vinyl alcohol) (PVA) as the gelling agent and glutaraldehyde (GTA) as the cross-linker has enabled significant improvements in the dose response and the stability over time of spatial radiation dose distributions. However, a standard procedure for preparing FG in terms of reagent concentrations is still missing in the literature. This study aims to investigate, by means of spectrophotometric analyses, how the sensitivity to the radiation dose and the range of linearity of the dose-response curve of PVA-GTA-FG dosimeters loaded with xylenol orange sodium salt (XO) are influenced by ferrous ammonium sulphate (FAS) and XO concentrations. Moreover, the effect of different concentrations of such compounds on self-oxidation phenomena in the dosimeters was evaluated. PVA-GTA-FG dosimeters were prepared using XO concentrations in the range 0.04-0.80 mM and FAS in the range 0.05-5.00 mM. The optical absorbance properties and the dose response of FG were investigated in the interval 0.0-42.0 Gy. The results demonstrate that the amount of FAS and XO determines both the sensitivity to the absorbed dose and the interval of linearity of the dose-response curve. The study suggests that the best performances of FG dosimeters for spectrophotometric analyses can be obtained using 1.00-0.40 mM and 0.200-0.166 mM concentrations of FAS and XO, respectively.

9.
Org Biomol Chem ; 19(17): 3925-3931, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949577

RESUMEN

A simple and efficient approach for the synthesis of 2-spirocyclopropyl-indolin-3-ones is herein described. The method involves a diasteroselective cyclopropanation of aza-aurones with tosylhydrazones, selected as versatile carbene sources, and represents a remarkable synthetic alternative to get access to this class of C2-spiropseudoindoxyl scaffolds. The reactions proceed in the presence of a base and catalytic amounts of benzyl triethylammonium chloride and well-tolerate a broad range of substituents on both aza-aurones and tosylhydrazones to afford a series of C2-spirocyclopropanated derivatives in high yields. In addition, selected functional group transformations of the final products were explored demonstrating the synthetic potential of these indole-based derivatives.

10.
Org Biomol Chem ; 19(22): 4958-4968, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34002178

RESUMEN

Two sets of unprecedented push-pull isoquinolines, characterized by an opposite "dipolar moment" with respect to the longitudinal axis of the molecule, have been prepared. The key step of the approach is the microwave-promoted domino imination/cycloisomerization of 2-alkynyl benzaldehydes in the presence of methanolic ammonia. Absorption spectra and emission spectra of the D-π-A isoquinolines and their alkynyl precursors in nine different solvents have been recorded. The absolute QYs of all compounds have been recorded in three solvents with different polarities, i.e. toluene, DMSO and ethanol. Among the D-π-A isoquinolines prepared - nicknamed QuinaChroms - two compounds characterized by opposite dipolar moments, i.e. 3-(4-methoxyphenyl)-7-nitroisoquinoline 1a and N,N-diethyl-3-(4-(methylsulfonyl)phenyl)isoquinolin-7-amine 2b displayed more interesting photophysical profiles, whereas 5-(diethylamino)-2-(A)arylethynylbenzaldehydes precursors 8a-c - having a free aldehyde group that is suitable for possible conjugation - exhibited strong fluorescence and wide Stokes shifts. These products are interesting for potential use as polarity-sensitive fluorescent probes or advanced functional materials.

11.
mSystems ; 5(5)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900870

RESUMEN

In bacterial cells, inhibition of ribosomes by sublethal concentrations of antibiotics leads to a decrease in the growth rate despite an increase in ribosome content. The limitation of ribosomal activity results in an increase in the level of expression from ribosomal promoters; this can deplete the pool of RNA polymerase (RNAP) that is available for the expression of nonribosomal genes. However, the magnitude of this effect remains to be quantified. Here, we use the change in the activity of constitutive promoters with different affinities for RNAP to quantify the change in the concentration of free RNAP. The data are consistent with a significant decrease in the amount of RNAP available for transcription of both ribosomal and nonribosomal genes. Results obtained with different reporter genes reveal an mRNA length dependence on the amount of full-length translated protein, consistent with the decrease in ribosome processivity affecting more strongly the translation of longer genes. The genes coding for the ß and ß' subunits of RNAP are among the longest genes in the Escherichia coli genome, while the genes coding for ribosomal proteins are among the shortest genes. This can explain the observed decrease in transcription capacity that favors the expression of genes whose promoters have a high affinity for RNAP, such as ribosomal promoters.IMPORTANCE Exposure of bacteria to sublethal concentrations of antibiotics can lead to bacterial adaptation and survival at higher doses of inhibitors, which in turn can lead to the emergence of antibiotic resistance. The presence of sublethal concentrations of antibiotics targeting translation results in an increase in the amount of ribosomes per cell but nonetheless a decrease in the cells' growth rate. In this work, we have found that inhibition of ribosome activity can result in a decrease in the amount of free RNA polymerase available for transcription, thus limiting the protein expression rate via a different pathway than what was expected. This result can be explained by our observation that long genes, such as those coding for RNA polymerase subunits, have a higher probability of premature translation termination in the presence of ribosome inhibitors, while expression of short ribosomal genes is affected less, consistent with their increased concentration.

12.
J Org Chem ; 85(5): 3265-3276, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31975604

RESUMEN

The synthesis of cyclohepta[b]indole derivatives through the dearomative (4 + 3) cycloaddition reaction of 2-vinylindoles or 4H-furo[3,2-b]indoles with in situ generated oxyallyl cations is reported. Oxyallyl cations are generated from α-bromoketones in the presence of a base and a perfluorinated solvent. Cyclohepta[b]indole scaffolds are obtained under mild reaction conditions, in the absence of expensive catalysts, starting from simple reagents, in good to excellent yields and with complete diasteroselectivity. Preliminary expansion of the scope to 3-vinylindoles and to aza-oxyallyl cations is reported.

13.
J Org Chem ; 84(9): 5150-5166, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-30919623

RESUMEN

Merging the ability of cationic gold(I) catalysts to activate unsaturated π-systems with the electrophiles-driven ring-opening reactions of furans, we describe a new approach to synthesize 2-spiroindolin-3-ones from 4 H-furo[3,2- b]indoles. The reaction occurs through a cascade sequence involving addition of a gold-activated allene to the furan moiety of the starting furoindole followed by a ring-opening/ring-closing event affording 2-spirocyclopentane-1,2-dihydro-3 H-indolin-3-ones in moderate to good yields.

14.
Front Microbiol ; 9: 1212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967594

RESUMEN

The uvrB gene belongs to the SOS network, encoding a key component of the nucleotide excision repair. The uvrB promoter region contains three identified promoters with four LexA binding sites, one consensus and six potential DnaA binding sites. A more than threefold increase in transcription of the chromosomal uvrB gene is observed in both the ΔlexA ΔsulA cells and dnaAA345S cells, and a fivefold increase in the ΔlexA ΔsulA dnaAA345S cells relative to the wild-type cells. The full activity of the uvrB promoter region requires both the uvrBp1-2 and uvrBp3 promoters and is repressed by both the DnaA and LexA proteins. LexA binds tightly to LexA-box1 at the uvrBp1-2 promoter irrespective of the presence of DnaA and this binding is important for the control of the uvrBp1-2 promoter. DnaA and LexA, however, compete for binding to and regulation of the uvrBp3 promoter in which the DnaA-box6 overlaps with LexA-box4. The transcription control of uvrBp3 largely depends on DnaA-box6. Transcription of other SOS regulon genes, such as recN and dinJ, is also repressed by both DnaA and LexA. Interestingly, the absence of LexA in the presence of the DnaAA345S mutant leads to production of elongated cells with incomplete replication, aberrant nucleoids and slow growth. We propose that DnaA is a modulator for maintenance of genome integrity during the SOS response by limiting the expression of the SOS regulon.

15.
Org Lett ; 20(2): 405-408, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29319320

RESUMEN

A [copper(I)pyridine-containing ligand]-catalyzed reaction between 2-vinylindoles and diazo esters is described. The reaction allows for the synthesis of a series of 2-vinylcyclopropa[b]indolines with excellent levels of regio- and sterocontrol under mild conditions.

16.
G3 (Bethesda) ; 5(4): 605-14, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25701587

RESUMEN

Cellular adaptation to changing environmental conditions requires the coordinated regulation of expression of large sets of genes by global regulatory factors such as nucleoid associated proteins. Although in eukaryotic cells genomic position is known to play an important role in regulation of gene expression, it remains to be established whether in bacterial cells there is an influence of chromosomal position on the efficiency of these global regulators. Here we show for the first time that genome position can affect transcription activity of a promoter regulated by the histone-like nucleoid-structuring protein (H-NS), a global regulator of bacterial transcription and genome organization. We have used as a local reporter of H-NS activity the level of expression of a fluorescent reporter protein under control of an H-NS-regulated promoter (Phns) at different sites along the genome. Our results show that the activity of the Phns promoter depends on whether it is placed within the AT-rich regions of the genome that are known to be bound preferentially by H-NS. This modulation of gene expression moreover depends on the growth phase and the growth rate of the cells, reflecting the changes taking place in the relative abundance of different nucleoid proteins and the inherent heterogeneous organization of the nucleoid. Genomic position can thus play a significant role in the adaptation of the cells to environmental changes, providing a fitness advantage that can explain the selection of a gene's position during evolution.


Asunto(s)
Cromosomas Bacterianos , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Sitios de Unión , Escherichia coli/crecimiento & desarrollo , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Orden Génico , Proteínas Luminiscentes/genética , Fenotipo , Regiones Promotoras Genéticas
17.
Analyst ; 139(20): 5254-62, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25137302

RESUMEN

We monitored the dynamics of cell dimensions and reporter GFP expression in individual E. coli cells growing in a microfluidic chemostat using time-lapse fluorescence microscopy. This combination of techniques allows us to study the dynamical responses of single bacterial cells to nutritional shift-down or shift-up for longer times and with more precision over the chemical environment than similar experiments performed on conventional agar pads. We observed two E. coli strains containing different promoter-reporter gene constructs and measured how both their cell dimensions and the GFP expression change after nutritional upshift and downshift. As expected, both strains have similar adaptation dynamics for cell size rearrangement. However, the strain with a ribosomal RNA promoter dependent reporter has a faster GFP production rate than the strain with a constitutive promoter reporter. As a result, the mean GFP concentration in the former strain changes rapidly with the nutritional shift, while that in the latter strain remains relatively stable. These findings characterize the present microfluidic chemostat as a versatile platform for measuring single-cell bacterial dynamics and physiological transitions.


Asunto(s)
Escherichia coli/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas , ARN Ribosómico/genética , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
18.
PLoS One ; 6(12): e28185, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164242

RESUMEN

BACKGROUND: Oxidative stress is a key feature in the pathogenesis of several neurological disorders. Following oxidative stress stimuli a wide range of pathways are activated and contribute to cellular death. The mechanism that couples c-Jun N-terminal kinase (JNK) signaling, a key pathway in stress conditions, to the small ubiquitin-related modifier (SUMO), an emerging protein in the field, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: With this study we investigated if SUMOylation participates in the regulation of JNK activation as well as cellular death in a model of H(2)O(2) induced-oxidative stress. Our data show that H(2)O(2) modulates JNK activation and induces cellular death in neuroblastoma SH-SY5Y cells. Inhibition of JNK's action with the D-JNKI1 peptide rescued cells from death. Following H(2)O(2), SUMO-1 over-expression increased phosphorylation of JNK and exacerbated cell death, although only in conditions of mild oxidative stress. Furthermore inhibition of SUMOylation, following transfection with SENP1, interfered with JNK activation and rescued cells from H(2)O(2) induced death. Importantly, in our model, direct interaction between these proteins can occur. CONCLUSIONS/SIGNIFICANCE: Taken together our results show that SUMOylation may significantly contribute to modulation of JNK activation and contribute to cell death in oxidative stress conditions.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Humanos , Inmunohistoquímica/métodos , Inmunoprecipitación , Estrés Oxidativo , Plásmidos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA