Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Pathogens ; 13(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204259

RESUMEN

The dissemination of resistant pathogens through food supply chains poses a significant public health risk, spanning from farm to fork. This study analyzed the distribution of Shiga toxin-producing Escherichia coli (STEC) across various sources within the animal-based food supply chain. A total of 500 samples were collected from livestock, poultry, the environment, fisheries, and dairy. Standard microbiological procedures were employed to isolate and identify E. coli isolates, which were further confirmed using MALDI-TOF and virulence-associated genes (VAGs) such as stx1, stx2, ompT, hylF, iutA, fimH, and iss. The phenotypic resistance patterns of the isolates were determined using the disc diffusion method, followed by molecular identification of antibiotic resistance genes (ARGs) through PCR. STEC were subjected to PCR-based O typing using specific primers for different O types. Overall, 154 (30.5%) samples were confirmed as E. coli, of which 77 (50%) were multidrug-resistant (MDR) E. coli. Among these, 52 (67.53%) isolates exhibited an array of VAGs, and 21 (40.38%) were confirmed as STEC based on the presence of stx1 and stx2. Additionally, 12 out of 52 (23.07%) isolates were identified as non-O157 STEC co-harbouring mcr-1 and blaNDM-1. O26 STEC was found to be the most prevalent among the non-O157 types. The results suggest that the detection of STEC in food supply chains may lead to serious health consequences, particularly in developing countries with limited healthcare resources.

2.
Acta Chim Slov ; 71(2): 421-435, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38919100

RESUMEN

Diabetes mellitus is a chronic metabolic disorder marked by elevated blood sugar levels, leading to organ dysfunction. Curcumin, derived from turmeric, exhibits promise in managing type II diabetes. Nanomicelles were created by conjugating curcumin with chitosan through succinic anhydride. Succinyl-curcumin, the resultant compound, was esterified with chitosan to form a polymer prodrug conjugate. Nanomicelles, formed via dialysis, were spherical with a hydrodynamic size of 49.37 nm. In vitro release studies revealed 97% curcumin release at pH 5 in 7 days. A 21-day experiment on diabetic mice compared nanomicelles, standard drug, and free curcumin's impact on fasting blood glucose. The study showcased gradual, controlled curcumin release from nanomicelles, suggesting their potential in type II diabetes treatment.


Asunto(s)
Quitosano , Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones Endogámicos BALB C , Micelas , Profármacos , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Quitosano/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Profármacos/química , Profármacos/farmacología , Nanopartículas/química , Masculino , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química
3.
Sci Rep ; 14(1): 12997, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844768

RESUMEN

Herbal medicine combined with nanoparticles has caught much interest in clinical dental practice, yet the incorporation of chitosan with Salvadora persica (S. persica) extract as an oral care product has not been explored. The aim of this study was to evaluate the combined effectiveness of Salvadora persica(S. persica) and Chitosan nanoparticles (ChNPs) against oropharyngeal microorganisms. Agar well diffusion, minimum inhibitory concentration, and minimal lethal concentration assays were used to assess the antimicrobial activity of different concentrations of ethanolic extracts of S. persica and ChNPs against selected fungal strains, Gram-positive, and Gram-negative bacteria. A mixture of 10% S. persica and 0.5% ChNPs was prepared (SChNPs) and its synergistic effect against the tested microbes was evaluated. Furthermore, the strain that was considered most sensitive was subjected to a 24-h treatment with SChNPs mixture; and examined using SEM, FT-IR and GC-MS analysis. S. persica extract and ChNPs exhibited concentration-dependent antimicrobial activities against all tested strains. S. persica extract and ChNPs at 10% were most effective against S. pneumoni, K. pneumoni, and C. albicans. SEM images confirmed the synergistic effect of the SChNPs mixture, revealing S. pneumonia cells with increased irregularity and higher cell lysis compared to the individual solutions. GC-MS and FT-IR analysis of SChNPs showed many active antimicrobial phytocompounds and some additional peaks, respectively. The synergy of the mixture of SChNPs in the form of mouth-rinsing solutions can be a promising approach for the control of oropharyngeal microbes that are implicated in viral secondary bacterial infections.


Asunto(s)
Quitosano , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Nanopartículas , Extractos Vegetales , Salvadoraceae , Quitosano/farmacología , Quitosano/química , Nanopartículas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Salvadoraceae/química , Orofaringe/microbiología , Orofaringe/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Candida albicans/efectos de los fármacos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier
4.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591163

RESUMEN

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz , Simulación del Acoplamiento Molecular , Cicatrización de Heridas/genética , Mutación , Metilación
5.
Open Vet J ; 14(1): 274-283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633164

RESUMEN

Background: Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims: To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods: 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results: TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion: The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.


Asunto(s)
Ácido Acético , Malus , Bovinos , Animales , Microbiología de Alimentos , Recuento de Colonia Microbiana/veterinaria , Antibacterianos , Salmonella typhimurium/genética
6.
Oncol Res ; 32(4): 737-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560573

RESUMEN

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sulfitos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Metaloproteinasa 12 de la Matriz , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 16 de la Matriz , Pronóstico , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Riñón/metabolismo , Riñón/patología
7.
ACS Omega ; 9(9): 10498-10516, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463273

RESUMEN

The purpose of the current research is to formulate a smart drug delivery system for solubility enhancement and sustained release of hydrophobic drugs. Drug solubility-related challenges constitute a significant concern for formulation scientists. To address this issue, a recent study focused on developing PEG-g-poly(MAA) copolymeric nanogels to enhance the solubility of olmesartan, a poorly soluble drug. The researchers employed a free radical polymerization technique to formulate these nanogels. Nine formulations were formulated. The newly formulated nanogels underwent comprehensive tests, including physicochemical assessments, dissolution studies, solubility evaluations, toxicity investigations, and stability examinations. Fourier transform infrared (FTIR) investigations confirmed the successful encapsulation of olmesartan within the nanogels, while thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) studies verified their thermal stability. Scanning electron microscopy (SEM) images revealed the presence of pores on the surface of the nanogels, facilitating water penetration and promoting rapid drug release. Moreover, powder X-ray diffraction (PXRD) studies indicated that the prepared nanogels exhibited an amorphous structure. The nanogel carrier system led to a significant enhancement in olmesartan's solubility, achieving a remarkable 12.3-fold increase at pH 1.2 and 13.29-fold rise in phosphate buffer of pH 6.8 (NGP3). Significant swelling was observed at pH 6.8 compared to pH 1.2. Moreover, the formulated nexus is nontoxic and biocompatible and depicts considerable potential for delivery of drugs and protein as well as heat-sensitive active moieties.

8.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 217-224, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158662

RESUMEN

Gastric cancer (GC) is a serious public health issue due to its frequency and severity. It is, for both sexes, one of the most common causes of cancer-related death and is a major contributor to the global burden of disease. Recent data show that Epstein-Barr virus (EBV) has been detected in different histopathological subtypes of gastric carcinoma and that EBV-associated gastric carcinoma (EBVaGC) represents about 10% of all cases. Moreover, the LMP1 protein characterizing the malignant transformation of cells in several cancer models seems to be very rarely expressed in this type of cancer. This study aimed to characterize EBVaGC in our population by detecting LMP1 in gastric carcinomas in about 30 selected patients. The results showed that in our population, nuclear staining predominates, showing that the antrum remains the most sampled site both for these pathologies and for LMP1 positivity (nuclear staining). In general, the LMP1 marking was negative for 22.58%, positive with a nuclear predominance at 64.52%, nuclear and cytoplasmic at 12.90%, and no positive marking for the cytoplasm. Results were not like the different studies on the expression of this oncogenic protein without EBVsCG, probably finding an explanation in the fact that our country is among the endemic regions for this herpes virus. In conclusion, the rate of LMP1 expression among gastric carcinomas does not seem similar to that observed in other countries. This study characterizing EBVaGC in Tizi-Ouzou, Algeria, reinforces the need for further studies to clarify the role of EBV (LMP1) and to explore its potential value as a predictive biomarker for the development of this type of cancer pathology.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Masculino , Femenino , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Neoplasias Gástricas/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/epidemiología , Infecciones por Virus de Epstein-Barr/patología , Coloración y Etiquetado , Carcinoma/patología
9.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 241-249, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158663

RESUMEN

We are looking into viral components that may contribute to breast cancer in order to find possible therapeutic targets. The Epstein-Barr virus (EBV), which has been found to cause nasopharyngeal carcinoma and Burkitt lymphoma, is thought to play a role in breast cancer. Our series' patients had a median age of 49, with nearly half being under the age of 49. T2 tumors (two to five centimeters in size) make up the vast majority of our collection (60%). Six percent of our patients showed lymph node involvement, with roughly the same number in the N1 and N2 stages (41.17% each). Only 17.64% of people are at the N3 stage. SBR II tumors were the most common (90%). Only 20% of patients have HER2 overexpression, whereas 73.33% have ER expression. EBV was found in 23.33% of breast carcinomas (7 cases/30) after oncoprotein LMP1 expression, but normal surrounding tissues tested negative. We discovered that overexpression of the HER2 protein is inversely related to the two HRs' expression. They have no relationship with EBV infection and, consequently, LMP1 expression. LMP1 expression was not shown to be linked with patient age, tumor grade, tumor size, or lymph node invasion.


Asunto(s)
Neoplasias de la Mama , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Femenino , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/patología , Neoplasias de la Mama/patología , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología
10.
Gels ; 9(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37998947

RESUMEN

Infected burned skin is a life-threatening condition, which may lead to sepsis. The aims of this work are to formulate a biofilm composed of silver sulfadiazine (SSD), chitosan (CS), and sodium alginate (SA), and to evaluate its wound-healing effectiveness. A full factorial design was used to formulate different matrix formulations. The prepared biofilm was tested for physicochemical, and in vitro release. The optimized formulation is composed of 0.833% of CS and 0.75% of SA. The release of SSD almost reached 100% after 6 h. The mechanical properties of the optimized formula were reasonable. The antibacterial activity for the optimized biofilm was significantly higher than that of blank biofilm, which is composed of CS and SA, p = 1.53922 × 10-12. Moreover, the in vivo study showed a 75% reduction in wound width when using the formulated SSD biofilm compared to standard marketed cream (57%) and the untreated group (0%).

11.
Int Wound J ; 21(3): e14506, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010070

RESUMEN

The incidence of squamous cell carcinoma (SCC) is on the rise, making it a significant global health concern. Environmental risk factors are crucial to the development of SCC. This study sought to examine comprehensively the impact of these factors on the onset of SCC. We conducted a cross-sectional study involving 480 participants at Beijing tertiary care hospital. Utilizing structured questionnaires, data on demographics, environmental exposures, medical history and clinical characteristics were collected. The cohort was composed of 272 men (56.67%) and 208 women (43.33%). The majority (44.38%) were between ages of 41 and 60, and Type III skin predominated (34.79%). Most of the participants belonged to the middle socioeconomic class (60.83%). 'Vegetarian' dietary habits (46.67%) were prevalent, as was the 'Sedentary' lifestyle (49.79%). Regarding environmental exposures, moderate sun exposure of 3 to 5 h per day (54.58%) and UV protective eyewear (30.83%) were prevalent. The majority (69.58%) of respondents indicated 'Never' exposure to carcinogens. A variety of wound characteristics were observed, with 'non-smokers' (64.17%) dominating. Most SCC lesions were located on the extremities (40.21%), lasted less than 6 months (44.38%) and measured 1-3 cm (39.79%). The majority (54.58%) did not have a history of cutaneous injuries. Our research uncovered substantial relationships between SCC and numerous environmental variables, gender, Fitzpatrick skin type, occupation, duration of sun exposure, exposure to carcinogens, dietary practices, history of skin wounds, wound location, duration, size and depth were significantly associated with the onset of SCC. These results highlighted the complexity of SCC aetiology and need for individualized prevention and treatment strategies.

12.
Mar Drugs ; 21(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888471

RESUMEN

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.


Asunto(s)
Actinobacteria , Antiinfecciosos , Nanopartículas del Metal , Actinobacteria/química , Antibacterianos/química , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana
13.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894631

RESUMEN

Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of -7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Fitoquímicos/química
14.
Int J Biol Macromol ; 253(Pt 4): 127032, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742901

RESUMEN

In current work, quince seed mucilage and ß-Cyclodextrin based pH regulated hydrogels were developed using aqueous free radical polymerization to sustain Capecitabine release patterns and to overcome its drawbacks, such as high dose frequency, short half-life, and low bioavailability. Developed networks were subjected to thermal analysis, Fourier transforms infrared spectroscopy, powder x-ray diffraction, elemental analysis, scanning electron microscopy, equilibrium swelling, and in-vitro release investigations to assess the network system's stability, complexation, morphology, and pH responsiveness. Thermally stable pH-responsive cross-linked networks were formed. Nanocomposite hydrogels were prepared by incorporating Capecitabine-containing clay into the swollen hydrogels. All the formulations exhibited equilibrium swelling ranging from 67.98 % to 92.98 % at pH 7.4. Optimum Capecitabine loading (88.17 %) was noted in the case of hydrogels, while it was 74.27 % in nanocomposite hydrogels. Excellent gel content (65.88 %-93.56 %) was noticed among developed formulations. Elemental analysis ensured the successful incorporation of Capecitabine. Nanocomposite hydrogels released 80.02 % longer than hydrogels after 30 h. NC hydrogels had higher t1/2 (10.57 h), AUC (121.52 µg.h/ml), and MRT (18.95 h) than hydrogels in oral pharmacokinetics. These findings imply that the pH-responsive carrier system may improve Capecitabine efficacy and reduce dosing frequency in cancer therapy. Toxicity profiling proved the system's safety, non-toxicity, and biocompatibility.


Asunto(s)
Rosaceae , beta-Ciclodextrinas , Metacrilatos/química , Capecitabina , Nanogeles , Polímeros , Semillas , Polisacáridos , Hidrogeles/química , beta-Ciclodextrinas/química , Concentración de Iones de Hidrógeno
15.
Oncol Res ; 31(6): 899-916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744271

RESUMEN

The low survival rate of Kidney renal clear cell carcinoma (KIRC) patients is largely attributed to cisplatin resistance. Rather than focusing solely on individual proteins, exploring protein-protein interactions could offer greater insight into drug resistance. To this end, a series of in silico and in vitro experiments were conducted to identify hub genes in the intricate network of cisplatin resistance-related genes in KIRC chemotherapy. The genes involved in cisplatin resistance across KIRC were retrieved from the National Center for Biotechnology Information (NCBI) database using search terms as "Kidney renal clear cell carcinoma" and "Cisplatin resistance". The genes retrieved were analyzed for hub gene identification using the STRING database and Cytoscape tool. Expression and promoter methylation profiling of the hub genes was done using UALCAN, GEPIA, OncoDB, and HPA databases. Mutational, survival, functional enrichment, immune cell infiltration, and drug prediction analyses of the hub genes were performed using the cBioPortal, GEPIA, GSEA, TIMER, and DrugBank databases. Lastly, expression and methylation levels of the hub genes were validated on two cisplatin-resistant RCC cell lines (786-O and A-498) and a normal renal tubular epithelial cell line (HK-2) using two high throughput techniques, including targeted bisulfite sequencing (bisulfite-seq) and RT-qPCR. A total of 124 genes were identified as being associated with cisplatin resistance in KIRC. Out of these genes, MCL1, IGF1R, CCND1, and PTEN were identified as hub genes and were found to have significant (p < 0.05) variations in their mRNA and protein expressions and effects on the overall survival (OS) of the KIRC patients. Moreover, an aberrant promoter methylation pattern was found to be associated with the dysregulation of the hub genes. In addition to this, hub genes were also linked with different cisplatin resistance-causing pathways. Thus, hub genes can be targeted with Alvocidib, Estradiol, Tretinoin, Capsaicin, Dronabinol, Metribolone, Calcitriol, Acetaminophen, Acitretin, Cyclosporine, Azacitidine, Genistein, and Resveratrol drugs. As the pathogenesis of KIRC is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance, which might uplift overall survival among KIRC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Cisplatino/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Riñón
16.
Life (Basel) ; 13(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37629525

RESUMEN

Milk contaminated with aflatoxin can lead to liver cancer. Aflatoxin B1 (AFB1), a serious animal feed contaminant, is transformed into Aflatoxin M1 (AFM1) and secreted in milk. In this study, a biological method using probiotic bacteria, Lactobacillus rhamnosus (L. rhamnosus) in combination with Saccharomyces cerevisiae (S. cerevisiae), was used to assess their antiaflatoxigenic effect in animal milk. A Box-Behnken design was used to establish the optimal ratio of L. rhamnosus and S. cerevisiae, incubation time, and temperature for efficient AFM1 detoxification from milk. To achieve this, the primary, interaction, and quadratic effects of the chosen factors were investigated. To investigate the quadratic response surfaces, a second-order polynomial model was built using a three-factor, three-level Box-Behnken design. The quantity of AFM1 was detected by the ELISA technique. The results of these experiments obtained an optimum condition in AFM1 detoxification of the three tested factors in order to maximize their effect on AFM1 detoxification in milk. The model was tested in three highly contaminated milk samples to assure the efficacy of the model. AFM1 detoxification was up to 98.4% in contaminated milk samples. These promising results provide a safe, low-cost, and low-time-consuming solution to get rid of the problem of milk contamination with AFM1.

17.
Saudi Pharm J ; 31(8): 101671, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37484541

RESUMEN

Background & Objectives: This study aimed to create a controlled delivery system for Tapentadol Hydrochloride by developing interpenetrating networks (IPNs) of Natrosol-Pectin copolymerized with Acrylic Acid and Methylene bisacrylamide, and to analyze the effects of various ingredients on the physical and chemical characteristics of the IPNs. Methods: Novel Tapentadol Hydrochloride-loaded Natrosol-Pectin based IPNs were formulated by using the free radical polymerization technique. Co-polymerization of Acrylic Acid (AA) with Natrosol and Pectin was performed by using Methylene bisacrylamide (MBA). Ammonium persulfate (APS) was used as the initiator of crosslinking process. The impact of ingredients i.e. Natrosol, Pectin, MBA, and Acrylic Acid on the gel fraction, porosity, swelling (%), drug loading, and drug release was investigated. FTIR, DSC, TGA, SEM and EDX studies were conducted to confirm the grafting of polymers and to evaluate the thermal stability and surface morphology of the developed IPNs. Results: Swelling studies exhibited an increase in swelling percentage from 84.27 to 91.17% upon increasing polymer (Natrosol and Pectin) contents. An increase in MBA contents resulted in a decrease in swelling from 85 to 67.63%. Moreover, the swelling was also observed to increase with higher AA contents. Significant drug release was noted at higher pH instead of gastric pH value. Oral toxicological studies revealed the nontoxic and biocompatible nature of Natrosol-Pectin IPNs. Interpretation & Conclusion: The developed IPNs were found to be an excellent system for the controlled delivery of Tapentadol Hydrochloride.

18.
Microorganisms ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512884

RESUMEN

The study aimed to investigate the antitumor efficacy of anti-LMP1 antibodies in EBV-positive nasopharyngeal and stomach cell lines and xenograft models. The study also examined the NF-κB expression and cell cycle activation of NPC-serum-exosome-associated LMP1. Anti-LMP1 antibody treatment before or during cell implantation prevented tumor growth in nude mice. A small dose of antibodies resulted in complete tumor regression for at least three months after the tumors had grown in size. The consumption of antigen-antibody complexes by tumor cells limited tumor growth. In vitro experiments showed that anti-LMP1 antibodies killed EBV-positive NPC- or GC-derived epithelial cell lines and EBV-positive human B-cell lines but not EBV-negative cell lines. Treatment with anti-LMP1 reduced NF-κB expression in cells. The animal model experiments showed that anti-LMP1 inhibited and prevented NPC- or GC-derived tumor growth. The results suggest that LMP1 antibody immunotherapy could cure nasopharyngeal cancer, EBV-positive gastric carcinoma, and EBV-associated lymphomas. However, further validation of these findings is required through human clinical trials.

19.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 207-213, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300665

RESUMEN

Leishmaniasis is an infectious disease that is often fatal in affected patients and represents a major public health problem. At present, no vaccine is available, and the drug treatments used are costly, long, and have numerous side effects, they also present variable effectiveness, frequent relapses, and a more and more marked resistance towards the parasites. Thus, new therapeutic strategies are urgently needed, and they are mainly based on the research of active natural products. The objective of our study is the chemical characterization and the quantification of the polyphenol contents contained in the EAF and EAT extracts of the Laperrine olive tree and the evaluation of their antileishmania effect against Leishmania infantum. The quantification of polyphenols, flavonoids and total tannins shows a higher content in the leaf extract. We find respectively 776.76±30.64 mg gallic acid equivalent/g DR; 114.35±14.12 mg quercetin equivalent/g DR and 214.89±.17 mg tannic acid equivalent/g DR.The chemical characterization of Olea europaea subsp. laperrinei extracts show the presence of numerous antileishmanial biomolecules such as oleuropein, hydroxytyrosol, rutin, gallic acid, cafeic acid, rosmarinic acid, and quercetin.In this context, we are testing the in vitro leishmanicidal effect of Laperrine olive tree extracts. The results obtained are promising and highlight the effectiveness of the tested extracts against the promastigote form of Leishmania infantum. Indeed, the LD50 is obtained with the leaf extract at a concentration of 7.52±2.71 µl/ml.


Asunto(s)
Leishmania infantum , Olea , Humanos , Quercetina/química , Olea/química , Extractos Vegetales/química , Antioxidantes , Polifenoles/farmacología , Taninos , Ácido Gálico , Hojas de la Planta
20.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 214-222, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300666

RESUMEN

The antioxidant and anti-inflammatory properties of an aqueous natural extract obtained from Rosa sempervirens leaves were assessed. The ability of the extract to scavenge DPPH, •OH, and H2O2 radicals, chelate ferrous ions, reduce ferric ions, and protect ß-carotene-linoleic acid in emulsion from peroxidation was investigated in vitro. Furthermore, the anti-inflammatory activity of the extract was evaluated by measuring the stability of the membrane of human red blood cells against different hypotonic concentrations of NaCl and heat, as well as by inhibiting the denaturation of albumin. A high total phenolic content (278.38± 11.07 mg GAE/g) and flavonoid content (34.22± 0.12 mg QE /g) were found in the extract. The extract exhibited significant scavenging activity of DPPH (IC50 6.201 ± 0.126 µg/ ml), •OH (IC50 = 894.57 ± 21.18 µg/ml), and H2O2 (IC50= 107±09.58 µg/ml) radicals, and good antioxidant activity by chelating ferrous ions (IC50 = 2499.086 ± 28.267µg/ml), reducing ferric ions (IC50=141.33±2.34 µg/ml), exhibiting total antioxidant capacity (IC50 465.65 ± 9.71 µg/ml), and protecting ß-carotene-linoleic acid against peroxidation (I% = 90.05 ± 1.65% at 1000µg/ml). R. sempervirens displayed anti-inflammatory activity in aqueous extract by inhibiting heat-induced albumin denaturation and stabilizing the membrane of human red blood cells. It was suggested from the results that R. sempervirens aqueous extract could help prevent oxidative and inflammatory processes due to its good antioxidant and anti-inflammatory properties.


Asunto(s)
Antioxidantes , Rosa , Humanos , Antioxidantes/química , Peróxido de Hidrógeno/química , Ácido Linoleico , beta Caroteno/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Antiinflamatorios/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA