Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.247
Filtrar
1.
Methods Mol Biol ; 2847: 45-61, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312136

RESUMO

In the advent of the RNA therapeutics and diagnostics era, it is of great relevance to introduce new and more efficient RNA technologies that prove to be effective tools in practical contexts. Moreover, it is of utmost importance to develop and provide access to computational tools capable of designing such RNA constructs. Here we introduce one such novel diagnostics technology (Apta-SMART) and show how to design (using MoiRNAiFold) and implement it, step by step. Moreover, we show how to combine this technique with well-known RNA amplification methods and briefly mention some encouraging results.


Assuntos
Simulação por Computador , RNA , RNA/genética , RNA/química , Biologia Computacional/métodos , Software , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
Methods Mol Biol ; 2847: 241-300, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312149

RESUMO

Nucleic acid tests (NATs) are considered as gold standard in molecular diagnosis. To meet the demand for onsite, point-of-care, specific and sensitive, trace and genotype detection of pathogens and pathogenic variants, various types of NATs have been developed since the discovery of PCR. As alternatives to traditional NATs (e.g., PCR), isothermal nucleic acid amplification techniques (INAATs) such as LAMP, RPA, SDA, HDR, NASBA, and HCA were invented gradually. PCR and most of these techniques highly depend on efficient and optimal primer and probe design to deliver accurate and specific results. This chapter starts with a discussion of traditional NATs and INAATs in concert with the description of computational tools available to aid the process of primer/probe design for NATs and INAATs. Besides briefly covering nanoparticles-assisted NATs, a more comprehensive presentation is given on the role CRISPR-based technologies have played in molecular diagnosis. Here we provide examples of a few groundbreaking CRISPR assays that have been developed to counter epidemics and pandemics and outline CRISPR biology, highlighting the role of CRISPR guide RNA and its design in any successful CRISPR-based application. In this respect, we tabularize computational tools that are available to aid the design of guide RNAs in CRISPR-based applications. In the second part of our chapter, we discuss machine learning (ML)- and deep learning (DL)-based computational approaches that facilitate the design of efficient primer and probe for NATs/INAATs and guide RNAs for CRISPR-based applications. Given the role of microRNA (miRNAs) as potential future biomarkers of disease diagnosis, we have also discussed ML/DL-based computational approaches for miRNA-target predictions. Our chapter presents the evolution of nucleic acid-based diagnosis techniques from PCR and INAATs to more advanced CRISPR/Cas-based methodologies in concert with the evolution of deep learning (DL)- and machine learning (ml)-based computational tools in the most relevant application domains.


Assuntos
Aprendizado Profundo , Humanos , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/genética , Aprendizado de Máquina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
3.
Clin Chim Acta ; 564: 119906, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127296

RESUMO

Mycoplasma pneumoniae can cause respiratory infections and pneumonia, posing a serious threat to the health of children and adolescents. Early diagnosis of Mycoplasma pneumoniae infection is crucial for clinical treatment. Currently, diagnostic methods for Mycoplasma pneumoniae infection include pathogen detection, molecular biology techniques, and bacterial culture, all of which have certain limitations. Here, we developed a rapid, simple, and accurate detection method for Mycoplasma pneumoniae that does not rely on large equipment or complex operations. This technology combines the CRISPR-Cas12a system with recombinase polymerase amplification (RPA), allowing the detection results to be observed through fluorescence curves and immunochromatographic lateral flow strips.It has been validated that RPA-CRISPR/Cas12a fluorescence analysis and RPA-CRISPR/Cas12-immunochromatographic exhibit no cross-reactivity with other common pathogens, and The established detection limit was ascertained to be as low as 102 copies/µL.Additionally, 49 clinical samples were tested and compared with fluorescence quantitative polymerase chain reaction, demonstrating a sensitivity and specificity of 100%. This platform exhibits promising clinical performance and holds significant potential for clinical application, particularly in settings with limited resources, such as clinical care points or resource-constrained areas.


Assuntos
Sistemas CRISPR-Cas , Mycoplasma pneumoniae , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Humanos , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia
4.
Clin Chim Acta ; 564: 119927, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39153656

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS: In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS: A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/µL, 5.8 × 10-2 ng/µL and 1.4 × 10-2 ng/µL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION: The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Proteínas de Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Methods Mol Biol ; 2852: 3-17, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235733

RESUMO

The use of direct nucleic acid amplification of pathogens from food matrices has the potential to reduce time to results over DNA extraction-based approaches as well as traditional culture-based approaches. Here we describe protocols for assay design and experiments for direct amplification of foodborne pathogens in food sample matrices using loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The examples provided include the detection of Escherichia coli in milk samples and Salmonella in pork meat samples. This protocol includes relevant reagents and methods including obtaining target sequences, assay design, sample processing, and amplification. These methods, though used for specific example matrices, could be applied to many other foodborne pathogens and sample types.


Assuntos
DNA Bacteriano , Microbiologia de Alimentos , Leite , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Salmonella , Técnicas de Amplificação de Ácido Nucleico/métodos , Microbiologia de Alimentos/métodos , Animais , Leite/microbiologia , Salmonella/genética , Salmonella/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Doenças Transmitidas por Alimentos/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Suínos
6.
J Med Microbiol ; 73(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360804

RESUMO

Introduction. Rotavirus A is the most common pathogen causing diarrhoea in children less than 5 years, leading to severe complications such as dehydration, electrolyte imbalances, acidosis, myocarditis, convulsions, pneumonia, and other life-threatening conditions.Gap statement. There is an urgent need for a rapid and efficient nucleic acid detection strategy to enable early diagnosis and treatment, preventing rotavirus transmission and associated complications.Aim. This article aimed to develop a nuclear acid sequence-based amplification (NASBA)-Cas12a system for detecting rotavirus A using fluorescence intensity or lateral flow strips.Methodology. The NASBA technology was combined with the clustered regularly interspaced short palindromic repeats-Cas12a system to establish a NASBA-Cas12a system for detecting rotavirus A.Results. The NASBA-Cas12a system could detect rotavirus A at 37 ℃ within 70 min and had no cross-reactivity with other viruses, achieving a limit of detection of 1.2 copies µl-1. This system demonstrated a sensitivity of 100%, specificity of 90%, positive predictive value of 97.22% and negative predictive value of 100%. The kappa value was 0.933, indicating that the NASBA-Cas12a system was highly consistent with reverse transcription-PCR.Conclusion. The NASBA-Cas12a system exhibited high sensitivity and specificity for detecting rotavirus A, showing great potential for clinical application.


Assuntos
Sistemas CRISPR-Cas , Infecções por Rotavirus , Rotavirus , Sensibilidade e Especificidade , Humanos , Rotavirus/genética , Rotavirus/isolamento & purificação , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/virologia , Replicação de Sequência Autossustentável/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Mikrochim Acta ; 191(11): 644, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361061

RESUMO

A low-cost, lab-made polytetrafluoroethylene micro-cell, equipped with three electrodes, wasd eveloped for the impedimetric detection of SARS-CoV-2. The gold working electrode was modified with a double-ended thiolated poly-adenine probe, which was conjugated with magnetic Fe3O4@Au nanoparticles (Fe3O4@Au-(S-polyA-S)-Au). After the loop-mediated isothermal amplification (LAMP) of viral RNA, the single-guide RNA (sgRNA), specifically bound to the SARS-CoV-2 target sequence, activates Cas12a. Cas12a then cleaved the immobilized probe. As a result, the magnetic Fe3O4@Au nanoparticles were released and adsorbed onto the gold electrode surface, using an external magnet. This process increased the physical surface area of the gold electrode, facilitating redox ion ([FeIII/II(CN)6]3-/4-) electron transfer. The decrease in the charge transfer resistance was utilized for SARS-CoV-2 detection. Our LAMP-CRISPR/Cas12a-based impedimetric biosensor, powered by Fe3O4@Au-(S-polyA-S)-Au, demonstrated impressive capabilities, including a remarkable detection limit of 0.8 aM (0.48 copies/µL) and a linear range of 0.01 to 36.06 fM.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Ouro , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/métodos , Ouro/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , RNA Viral/análise , COVID-19/diagnóstico , COVID-19/virologia , Limite de Detecção , Eletrodos , Poli A/química , Proteínas Associadas a CRISPR , Nanopartículas de Magnetita/química , Endodesoxirribonucleases/química , Nanopartículas Metálicas/química , Proteínas de Bactérias , Técnicas de Diagnóstico Molecular
8.
PeerJ ; 12: e17776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224820

RESUMO

Background: The tcdA gene codes for an important toxin produced by Clostridioides difficile (C. difficile), but there is currently no simple and cost-effective method of detecting it. This article establishes and validates a rapid and visual loop-mediated isothermal amplification (LAMP) assay for the detection of the tcdA gene. Methods: Three sets of primers were designed and optimized to amplify the tcdA gene in C. difficile using a LAMP assay. To evaluate the specificity of the LAMP assay, C. difficile VPI10463 was used as a positive control, while 26 pathogenic bacterial strains lacking the tcdA gene and distilled water were utilized as negative controls. For sensitivity analysis, the LAMP assay was compared to PCR using ten-fold serial dilutions of DNA from C. difficile VPI10463, ranging from 207 ng/µl to 0.000207 pg/µl. The tcdA gene of C.difficile was detected in 164 stool specimens using both LAMP and polymerase chain reaction (PCR). Positive and negative results were distinguished using real-time monitoring of turbidity and chromogenic reaction. Results: At a temperature of 66 °C, the target DNA was successfully amplified with a set of primers designated, and visualized within 60 min. Under the same conditions, the target DNA was not amplified with the tcdA12 primers for 26 pathogenic bacterial strains that do not carry the tcdA gene. The detection limit of LAMP was 20.700 pg/µl, which was 10 times more sensitive than that of conventional PCR. The detection rate of tcdA in 164 stool specimens using the LAMP method was 17% (28/164), significantly higher than the 10% (16/164) detection rate of the PCR method (X2 = 47, p < 0.01). Conclusion: LAMP method is an effective technique for the rapid and visual detection of the tcdA gene of C. difficile, and shows potential advantages over PCR in terms of speed, simplicity, and sensitivity. The tcdA-LAMP assay is particularly suitable for medical diagnostic environments with limited resources and is a promising diagnostic strategy for the screening and detection of C. difficile infection in populations at high risk.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Enterotoxinas , Fezes , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Toxinas Bacterianas/genética , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Fezes/química , Enterotoxinas/genética , Primers do DNA/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Adulto , Pessoa de Meia-Idade
9.
BMC Res Notes ; 17(1): 255, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256849

RESUMO

OBJECTIVE: Environmental DNA (eDNA) methods are crucial for monitoring populations, particularly rare and cryptic species. For confident eDNA application, rigorous assay validation is required including specificity testing with genomic DNA (gDNA). However, this critical step is often difficult to achieve as obtaining fresh tissue samples from at-risk species can be difficult, highly limited, or impossible. Natural history museum collections could serve as a valuable and ethical voucher specimen resource for eDNA assay validation. The present study demonstrates the effectiveness of whole genome amplification (WGA) in providing enough gDNA to assemble high quality mitogenomes from which robust targeted eDNA assays can be designed. RESULTS: Using fresh and historical museum tissue samples from six species spanning fish, birds, and mammals, we successfully developed a WGA method with an average yield of 380 to 1,268 ng gDNA per 20 µL reaction. This gDNA was used for whole genome shotgun sequencing and subsequent assembly of high quality mitogenomes using mtGrasp. These mitogenomes were then used to develop six new robust, targeted quantitative real time polymerase chain reaction-based eDNA assays and 200 ng WGA-enriched yielded satisfactory Cq values and near 100% detection frequencies for all assays tested. This approach offers a cost-effective and non-invasive alternative, streamlining eDNA research processes and aiding in conservation efforts.


Assuntos
DNA Ambiental , Museus , DNA Ambiental/genética , DNA Ambiental/análise , Animais , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Técnicas de Amplificação de Ácido Nucleico/métodos , Aves/genética , Peixes/genética , Genoma Mitocondrial/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
10.
PLoS Pathog ; 20(9): e1012418, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264872

RESUMO

High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Bacteriano , Técnicas de Amplificação de Ácido Nucleico/métodos , Bactérias/genética , Genoma Microbiano , Sequenciamento Completo do Genoma/métodos
11.
Clin Lab ; 70(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39257119

RESUMO

BACKGROUND: This study aimed to establish a method for the rapid detection of highly virulent Klebsiella pneumoniae (hvKP) by using multienzyme isothermal rapid amplification (MIRA) technology. The laboratory can quickly, accurately, and conveniently diagnose highly virulent Klebsiella pneumoniae infection. METHODS: For this study, 7 laboratory standard strains and 184 clinical isolates (including 70 strains of Klebsiella pneumoniae) were collected and screened for highly virulent Klebsiella pneumoniae based on its colony morphology, wire drawing test, and next-generation sequencing (NGS) results. Based on the nucleic acid sequence of the peg344 gene of highly virulent Klebsiella pneumoniae on GenBank (no. AP006726.1), specific conserved regions were selected to design MIRA and real-time fluorescence quantitative PCR (qPCR) specific primers and probes. The MIRA and qPCR methods were used to detect the tested strain, and the specificity, sensitivity, and clinical performance of the MIRA method for detecting hvKP were evaluated. RESULTS: In total, 21 cases of hvKP were screened from clinical isolates. The MIRA detection method utilizes specific primers and probes to transmit significant fluorescence signals at 39°C, and the detection process takes 30 minutes. The specificity test results showed that only hvKP had a specific amplification curve, while the rest of non-highly virulent Klebsiella pneumoniae (non-hvKP) had no specific amplification curve. The sensitivity test results showed that the sensitivity of MIRA for detecting hvKP is 7 × 102 CFU/mL, which is consistent with the sensitivity of the real-time fluorescence qPCR method. A simultaneous detection of 184 clinical isolates was accomplished by using MIRA and qPCR methods. Twenty-one strains of hvKP have specific amplification curves, while the remaining 163 strains of non-hvKP have no specific amplification curves. The accuracy of both methods for detecting hvKP is 100%. CONCLUSIONS: The established multienzyme isothermal rapid amplification (MIRA) has the following characteristics: a short detection time, high sensitivity, and a strong specificity, and it can be used as a powerful tool for an early diagnosis and epidemiological monitoring of hvKp.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Virulência/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes
12.
Biosens Bioelectron ; 266: 116727, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232433

RESUMO

The isolation and identification of pathogenic bacteria from a variety of samples are critical for controlling bacterial infection-related health problems. The conventional methods, such as plate counting and polymerase chain reaction-based approaches, tend to be time-consuming and reliant on specific instruments, severely limiting the effective identification of these pathogens. In this study, we employed the specificity of the cell wall-binding (CBD) domain of the Staphylococcus aureus bacteriophage 80 alpha (80α) endolysin towards the host bacteria for isolation. Amidase 3-CBD conjugated magnetic beads successfully isolated as few as 1 × 102 CFU/mL of S. aureus cells from milk, blood, and saliva. The cell wall hydrolyzing activity of 80α endolysin promoted the genomic DNA extraction efficiency by 12.7 folds on average, compared to the commercial bacterial genomic DNA extraction kit. Then, recombinase polymerase amplification (RPA) was exploited to amplify the nuc gene of S. aureus from the extracted DNA at 37 °C for 30 min. The RPA product activated Cas12a endonuclease activity to cleave fluorescently labeled ssDNA probes. We then converted the generated signal into a fluorescent readout, detectable by either the naked eye or a portable, self-assembled instrument with ultrasensitivity. The entire procedure, from isolation to identification, can be completed within 2 h. The simplicity and sensitivity of the method developed in this study make it of great application value in S. aureus detection, especially in areas with limited resource supply.


Assuntos
Técnicas Biossensoriais , Endopeptidases , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/virologia , Técnicas Biossensoriais/métodos , Endopeptidases/química , Endopeptidases/isolamento & purificação , Endopeptidases/genética , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Humanos , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/química , Fagos de Staphylococcus/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções Estafilocócicas/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/genética , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Biosens Bioelectron ; 266: 116720, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241338

RESUMO

Quantification of trace amounts of proteins is technically challenging because proteins cannot be directly amplified like nucleic acids. To improve the analytical sensitivity and to complement conventional protein analysis methods, we developed a highly sensitive and homogeneous detection strategy called Protein-Induced DNA Dumbbell Amplification (PINDA). PINDA combines protein recognition with exponential nucleic acid amplification by using protein binding probes made of DNA strands conjugated to protein affinity ligands. When a pair of probes bind to the same target protein, complementary nucleic acid sequences that are conjugated to each probe are brought into close proximity. The increased local concentration of the probes results in the formation of a stable dumbbell structure of the nucleic acids. The DNA dumbbell is readily amplifiable exponentially using techniques such as loop-mediated isothermal amplification. The PINDA assay eliminates the need for washing or separation steps, and is suitable for on-site applications. Detection of the model protein, thrombin, has a linear range of 10 fM-100 pM and detection limit of 10 fM. The PINDA technique is successfully applied to the analysis of dairy samples for the detection of ß-lactoglobulin, a common food allergen, and Salmonella enteritidis, a foodborne pathogenic bacterium. The PINDA assay can be easily modified to detect other targets by changing the affinity ligands used to bind to the specific targets.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Salmonella enteritidis/isolamento & purificação , Salmonella enteritidis/genética , Trombina/análise , Limite de Detecção , Lactoglobulinas/análise , Lactoglobulinas/química , Contaminação de Alimentos/análise , Humanos , Animais , Análise de Alimentos/métodos , Leite/química , Leite/microbiologia , Microbiologia de Alimentos
14.
Sci Rep ; 14(1): 21961, 2024 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304686

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered global difficulties for both individuals and economies, with new variants continuing to emerge. The Delta variant of SARS-CoV-2 remains most prevalent worldwide, and it affects the efficacy of coronavirus disease 2019 (COVID-19) vaccination. Expedited testing to detect the Delta variant of SARS-CoV-2 and monitor viral transmission is necessary. This study aimed to develop and evaluate a colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) technique targeting the L452R mutation in the S gene for the specific detection of the Delta variant. In the test, positivity was indicated as a color change from purple to yellow. The assay's 95% limit of detection was 57 copies per reaction for the L452R (U1355G)-specific standard plasmid. Using 126 clinical samples, our assay displayed 100% specificity, 97.06% sensitivity, and 98.41% accuracy in identifying the Delta variant of SARS-CoV-2 compared to real-time RT-PCR. To our knowledge, this is the first colorimetric RT-LAMP assay that can differentiate the Delta variant from its generic SARS-CoV-2, enabling it as an approach for studying COVID-19 demography and facilitating proper effective control measure establishment to fight against the reemerging variants of SARS-CoV-2 in the future.


Assuntos
COVID-19 , Colorimetria , Mutação , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Colorimetria/métodos , COVID-19/virologia , COVID-19/diagnóstico , COVID-19/genética , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Glicoproteína da Espícula de Coronavírus/genética , RNA Viral/genética , Teste de Ácido Nucleico para COVID-19/métodos
15.
Sci Rep ; 14(1): 21946, 2024 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304692

RESUMO

The plant virus, Impatiens necrotic spot virus (INSV), is an economically important pathogen of vegetables, fruits, and ornamental crops. INSV is vectored by the western flower thrips, Frankliniella occidentalis, a small insect pest that is globally distributed. In recent years, INSV outbreaks have reached epidemic levels in the Salinas Valley of California-an agriculturally rich region where most of the lettuce (Lactuca sativa) is produced in the United States. Due to the obligate nature in which virus transmission occurs, new tools that could rapidly detect INSV from thrips vectors would enhance our ability to predict where virus outbreaks may occur. Here, we report on the development of a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect INSV from individual thrips. The assay uses crude extraction methods, is performed at a single temperature of 42 °C, can be completed in 25 min, and provides sensitivity levels that are comparable to other available detection methods. When the assay was used on field populations of thrips, INSV was successfully identified and quantified from individual larvae and adults. The work provides a new cost-effective surveillance tool that can rapidly detect INSV from its insect vector and from plants.


Assuntos
Doenças das Plantas , Tisanópteros , Animais , Tisanópteros/virologia , Tisanópteros/genética , Doenças das Plantas/virologia , Doenças das Plantas/parasitologia , Insetos Vetores/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo , Recombinases/genética , Tospovirus/genética , Tospovirus/isolamento & purificação , Transcrição Reversa
16.
Mycopathologia ; 189(5): 87, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312077

RESUMO

Candida auris is a pathogenic yeast frequently exhibiting multidrug resistance and thus warrants special attention. The prompt detection and proper identification of this organism are needed to prevent its spread in healthcare facilities. The authors of this paper had previously developed LAMPAuris, a loop-mediated isothermal amplification assay, for the specific detection of C. auris. LAMPAuris is evaluated in this report for its ability to identify C. auris from five clades and to detect it from clinical specimens. A total of 103 skin swab samples were tested in comparison with a culture-based method and C. auris-specific SYBR green qPCR. The results show that the LAMPAuris assay had specificities ranging from 97 to 100% and sensitivities ranging from 66 to 86%. The lower sensitivity could be attributed to DNA degradation caused by the prolonged storage of the samples. In conclusion, LAMPAuris proved to be a rapid and reliable method for identifying C. auris and for detecting it in clinical specimens. Fresh specimens should ensure better yield and higher sensitivities.


Assuntos
Candida auris , Candidíase , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Candidíase/diagnóstico , Candidíase/microbiologia , Candida auris/genética , Candida auris/isolamento & purificação , Pele/microbiologia , Fatores de Tempo , Candida/isolamento & purificação , Candida/genética , Candida/classificação
17.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337553

RESUMO

Loop-mediated isothermal amplification (LAMP) is a cost-effective, rapid, and highly specific method of replicating nucleic acids. Adding multiple targets into a single LAMP assay to create a multiplex format is highly desirable for clinical applications but has been challenging due to a need to develop specific detection techniques and strict primer design criteria. This study describes the evaluation of a rapid triplex LAMP assay, MAST ISOPLEX®VTEC, for the simultaneous detection of Shiga toxin/verotoxin 1 and 2 (stx1/vt1 and stx2/vt2) genes in verotoxigenic Escherichia coli (E. coli) (VTEC) isolates with inhibition control (IC) synthetic DNA using a single fluorophore-oligonucleotide probe, MAST ISOPLEX®Probes, integrated into the primer set of each target. MAST ISOPLEX®Probes used in the MAST ISOPLEX®VTEC kit produce fluorescent signals as they integrate with reaction products specific to each target, allowing tracking of multiple amplifications in real time using a real-time analyzer. Initial validation on DNA extracts from fecal cultures and synthetic DNA sequences (gBlocks) showed that the MAST ISOPLEX®VTEC kit provides a method for sensitive simultaneous triplex detection in a single assay with a limit of detection (LOD) of less than 100 target copies/assay and 96% and 100% sensitivity and specificity, respectively.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Sensibilidade e Especificidade , Toxina Shiga I/genética , Técnicas de Diagnóstico Molecular/métodos , Toxina Shiga II/genética , Limite de Detecção , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/diagnóstico , Kit de Reagentes para Diagnóstico
18.
Mikrochim Acta ; 191(10): 631, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340568

RESUMO

A highly specific and sensitive rapid two-signal assay was developed for the detection of Salmonella typhimurium in foods of animal origin. The invA gene of Salmonella was used as the biorecognition element and recombinase-assisted amplification (RAA) technology for signal amplification. By utilizing the specific recognition and efficient trans-cleavage activity of CRISPR/Cas12a, point-of-care testing (POCT) for S. typhimurium was achieved via lateral flow strips (LFS) and personal glucometer (PGM) biosensors as dual signal readout systems, with sensitivities of 33 CFU/mL and 20 CFU/mL, respectively. Users can select the appropriate test system on the basis of specific application requirements: LFSs are ideal for rapid onsite screening, whereas glucometer biosensors offer precise quantitative determination. This approach simplifies the use of large instruments and overcomes site constraints, demonstrating good accuracy and applicability in animal-derived samples, with significant potential for the detection of other pathogens and for use in restricted environments.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Microbiologia de Alimentos , Salmonella typhimurium , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Animais , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Associadas a CRISPR/genética , Limite de Detecção , Contaminação de Alimentos/análise , Endodesoxirribonucleases , Recombinases/metabolismo , Testes Imediatos
19.
Sci Rep ; 14(1): 22520, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342022

RESUMO

Monitoring yellow fever in non-human primates (NHPs) is an early warning system for sylvatic yellow fever outbreaks, aiding in preventing human cases. However, current diagnostic tests for this disease, primarily relying on RT-qPCR, are complex and costly. Therefore, there is a critical need for simpler and more cost-effective methods to detect yellow fever virus (YFV) infection in NHPs, enabling early identification of viral circulation. In this study, an RT-LAMP assay for detecting YFV in NHP samples was developed and validated. Two sets of RT-LAMP primers targeting the YFV NS5 and E genes were designed and tested together with a third primer set to the NS1 locus using NHP tissue samples from Southern Brazil. The results were visualized by colorimetry and compared to the RT-qPCR test. Standardization and validation of the RT-LAMP assay demonstrated 100% sensitivity and specificity compared to RT-qPCR, with a detection limit of 12 PFU/mL. Additionally, the cross-reactivity test with other flaviviruses confirmed a specificity of 100%. Our newly developed RT-LAMP diagnostic test for YFV in NHP samples will significantly contribute to yellow fever monitoring efforts, providing a simpler and more accessible method for viral early detection. This advancement holds promise for enhancing surveillance and ultimately preventing the spread of yellow fever.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Febre Amarela , Vírus da Febre Amarela , Animais , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/isolamento & purificação , Brasil/epidemiologia , Febre Amarela/diagnóstico , Febre Amarela/virologia , Febre Amarela/epidemiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Primatas/virologia
20.
Mikrochim Acta ; 191(10): 601, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283340

RESUMO

A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (λex = 570 nm, λem = 625 nm) and H2-AgNCs (λex = 470 nm, λem = 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic Fe3O4 modified graphene oxide (Fe3O4@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of Fe3O4@GO due to weak π-π interaction between dsDNA and Fe3O4@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L-1 for NOS and 5 ~ 200 nmol L-1 CaMV35S, and the LODs were 0.14 nmol L-1 and 0.18 nmol L-1, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Nanopartículas Metálicas , Prata , Prata/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Grafite/química , Sequências Repetidas Invertidas , Plantas Geneticamente Modificadas/genética , Catálise , Corantes Fluorescentes/química , Caulimovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Virais/química , Proteínas Virais/genética , Aminoácido Oxirredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA