Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140406, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047480

RESUMO

Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.


Assuntos
Antioxidantes , Hipoglicemiantes , Hidrolisados de Proteína , Salvia hispanica , alfa-Amilases , Hipoglicemiantes/química , Antioxidantes/química , Hidrolisados de Proteína/química , alfa-Amilases/química , Salvia hispanica/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Humanos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Salvia/química
2.
Plant Foods Hum Nutr ; 79(2): 292-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775983

RESUMO

The byproduct of Salvia hispanica (chia) seed oil extraction by cold pressing, also known as expeller, possesses a high nutritional value. It is rich in proteins, fibers, minerals, and has a residual oil content of 7-11%, which is rich in omega 3 linolenic acid (ALA). However, this byproduct has been historically undervalued. Thus, the aim of current work was to study the effects of consuming of a rich in chia expeller diet on a rabbit model of metabolically unhealthy normal weight to validate their use as a functional food. Rabbits were fed different diets for a period of 6 weeks: a standard diet (CD), a high-fat diet (HFD), a rich in expeller CD (Exp-CD) and a rich in expeller HFD (Exp-HFD). The Exp-HFD attenuated the rise in basal glucose, TyG index, triglycerides, cholesterol and non-HDL cholesterol induced by the HFD. Both rich in expeller diets reduced mean arterial blood pressure (MAP) and increase liver and fat ALA levels compared to their respective controls. Furthermore, the angiotensin converting enzyme (ACE) activity was lower in the lungs of animals fed on rich in expeller diets compared to their respective controls. In vitro studies showed that ALA inhibited ACE activity. The evaluation of vascular reactivity revealed that rich in expeller diets improved angiotensin II affinity and reduced contractile response to noradrenaline. In conclusion, the consumption of rich in expeller diets showed beneficial effects in preventing cardiovascular risk factors such as insulin resistance, dyslipidemia and MAP. Therefore, its use as functional ingredient holds significant promise.


Assuntos
Dieta Hiperlipídica , Óleos de Plantas , Salvia hispanica , Sementes , Animais , Coelhos , Sementes/química , Óleos de Plantas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Pressão Sanguínea/efeitos dos fármacos , Fatores de Risco de Doenças Cardíacas , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Doenças Cardiovasculares/prevenção & controle , Ácido alfa-Linolênico/farmacologia , Modelos Animais de Doenças , Alimento Funcional , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Colesterol/sangue , Salvia/química , Valor Nutritivo
3.
PLoS One ; 19(4): e0300864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635849

RESUMO

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Assuntos
Cucurbita , Animais , Feminino , Ovinos , Cucurbita/metabolismo , Lactação , Salvia hispanica , Detergentes , Fibras na Dieta/metabolismo , Dieta/veterinária , Sementes/metabolismo , Digestão , Ração Animal/análise , Zea mays/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo
4.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257357

RESUMO

Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.


Assuntos
Substitutos da Carne , Extratos Vegetais , Salvia hispanica , Sementes , Carne , Farinha
5.
J Sci Food Agric ; 104(6): 3352-3360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105416

RESUMO

BACKGROUND: Omega-3 fatty acids are known for their various health benefits. Chia is the richest vegetable source of omega-3 fatty acids. However, its oil is highly susceptible to oxidative deterioration and should be protected for incorporation into food matrices. This work aimed to study the incorporation of different chia oil microcapsules in a powdered beverage, analyzing the effect on the physicochemical characteristics and stability during storage. RESULTS: Different types of microcapsules were obtained: monolayer microcapsules using sodium caseinate and lactose as wall material, and multilayer microcapsules produced through electrostatic deposition using lecithins, chitosan, and chia mucilage as the first, second, and third layers, respectively. The results demonstrated an efficient enrichment of smoothies, with omega-3 fatty acid values ranging from 24.09% to 42.73%, while the original food matrix powder lacked this component. These powder beverages exhibited low moisture content (≤ 2.91%) and low water activity (≤ 0.39). The aerated, packed density and compressibility assays indicated that adding microcapsules made the powders less dense and compressible. The color of the original powdered beverage was not modified. The dispersibility reflected an acceptable instantaneity, reaching the maximum obscuration after 30 s of stirring. The solubility of all the enriched products was higher than 70%, whereas the pH was ~6.8. The contact angle between the powder and liquid indicated an excellent ability to be reconstituted in water. The analysis of the glass transition temperature showed that the storage temperature (25 °C) was adequate. The peroxide value of all the products was low throughout the storage (≤ 1.63 meq peroxide kg-1 of oil at 90 days at 25 ± 2 °C), thus maintaining the quality of the microencapsulated chia oil. CONCLUSIONS: The results suggest that incorporating the monolayer and multilayer chia oil microcapsules that were studied could be a viable strategy for enriching smoothies with the omega-3 fatty acids present in chia seed oil. © 2023 Society of Chemical Industry.


Assuntos
Ácidos Graxos Ômega-3 , Extratos Vegetais , Salvia hispanica , Salvia , Salvia/química , Frutas/química , Ácidos Graxos Ômega-3/química , Cápsulas , Pós , Óleos de Plantas/química , Bebidas/análise , Água , Peróxidos , Ácidos Graxos
6.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138560

RESUMO

Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Salvia , Humanos , alfa-Amilases , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Salvia hispanica , Sementes
7.
Plant Foods Hum Nutr ; 78(4): 735-741, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856036

RESUMO

The consumption of chia seeds has become popular due to their beneficial health properties and the germination of chia seeds seems to further enhance these properties. This study aimed to evaluate the changes in the nutritional composition of chia seeds after germination for 3 and 6 days. Chemical composition, fatty acid profile, phenolic content and antioxidant capacity were determined. The indices of lipid quality, atherogenicity, thrombogenicity, and the n-6/n-3 ratio were calculated. Chia sprouts presented a significant increase in minerals, proteins, and a reduction in total lipid content with maintenance of lipid quality. Total phenolic content decreased significantly as germination time increased, but there was a significant increase in the amount of rosmarinic acid. Chia sprouts showed a significant increase in antioxidant potential when compared to raw chia seeds. As a conclusion, the results of this study demonstrated that chia seed germination is a simple, economical, and short-term process capable of improving the nutritional composition of the seeds.


Assuntos
Antioxidantes , Salvia , Antioxidantes/análise , Ácidos Graxos/análise , Salvia hispanica , Salvia/química , Sementes/química , Fenóis/análise
8.
Food Res Int ; 172: 113095, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689868

RESUMO

A diet rich in sugar and fat can promote metabolic disorders development, especially in the intestine. Chia flour (Salvia hispanica. L) is a source of dietary fiber, alpha-linolenic fatty acid (ALA), bioactive peptides, and phenolics, promoting health benefits. This study aimed to analyze chia flour's effect on gut microbiota modulation and intestinal health in adult male Wistar rats fed a high-fat and high-fructose (HFHF) diet. Male Wistar rats (n = 10/group) were fed the diets standard (AIN-93M) or HFHF (31% saturated fat and 20% fructose) in the first phase to induce metabolic disorders. In the second phase, the rats were fed AIN-93M, HFHF, or HFHF plus 14.7% chia flour (HFHF + CF) for 10 weeks. The consumption of chia flour increased the ALA (3.24 ± 0.24) intake and significantly improved immunoglobulin A (IgA) levels (1126.00 ± 145.90), goblet cells number (24.57 ± 2.76), crypt thickness (34.37 ± 5.86), crypt depth (215.30 ± 23.19), the longitudinal muscle layer (48.11 ± 5.04), cecum weight (4.39 ± 0.71), Shannon index (p < 0.05), and significantly increased the production of acetic (20.56 ± 4.10) and butyric acids (5.96 ± 1.50), Monoglobus sp., Lachnospiraceae sp., and Prevotellaceae sp. abundance. Furthermore, chia significantly reduced the cecal pH content (7.54 ± 1.17), body mass index (0.62 ± 0.03) and weight (411.00 ± 28.58), and Simpson index (p < 0.05). Therefore, chia intake improved intestinal health parameters and functionality in rats with metabolic disorders, which demonstrates to be an effective strategy for gut microbiota modulation.


Assuntos
Farinha , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Ratos Wistar , Frutose , Salvia hispanica , Dieta
9.
J Food Sci ; 88(10): 4194-4217, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37655475

RESUMO

Chia-derived peptides might represent a novel alternative to conventional preservatives in food. Despite the antibacterial potential of these molecules, their food application is still limited. This study aimed to evaluate chia-derived peptides' antibacterial and antibiofilm potential in food preservation. The peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were synthesized, and their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Salmonella Enteritidis was evaluated through microdilution tests. A bacterial killing kinetic assay determined bacterial growth over time. The ability to prevent and eradicate S. aureus biofilm was assessed by crystal violet staining. The hemolytic and cytotoxic activities were determined in human red blood cells and fibroblasts using free hemoglobin detection and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays, respectively. Finally, a microbial challenge was performed on meat samples inoculated with L. monocytogenes and S. Enteritidis to determine their inhibitory effects on pork meat. Results showed the potential antibacterial activity of these peptides, with minimum inhibitory concentrations ranging from 0.23 to 5.58 mg/mL. Biofilm inhibition percentages were above 40%, and eradication percentages were lower than 20%. In vitro assays in human red blood cells and fibroblasts demonstrated that peptides are not hemolytic or cytotoxic agents. In microbiological challenge testing, KKLLKI showed the most promising antibacterial effects against S. Enteritidis on refrigerated pork meat samples. These findings suggest that chia-derived peptides have the potential as natural food preservatives due to their antibacterial and antibiofilm properties. Notably, KKLLKI demonstrated promising antibacterial effects against Salmonella spp. on a complex food matrix, such as pork meat. PRACTICAL APPLICATION: Chia-derived peptides can be a safer alternative to synthetic preservatives in the food industry because the latter may be detrimental to human health. Salmonella spp. growth on chilled pork meat was shown to be inhibited by the peptide KKLLKI, indicating that the use of these peptides may offer a more secure and natural alternative to synthetic preservatives.


Assuntos
Listeria monocytogenes , Carne de Porco , Carne Vermelha , Animais , Humanos , Suínos , Carne Vermelha/microbiologia , Salvia hispanica , Staphylococcus aureus , Antibacterianos/farmacologia , Peptídeos/farmacologia , Salmonella enteritidis , Microbiologia de Alimentos
10.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687053

RESUMO

Salvia hispanica L., commonly known as chía, and its seeds have been used since ancient times to prepare different beverages. Due to its nutritional content, it is considered a dietary ingredient and has been reported with many health benefits. Chia seed components are helpful in cardiovascular disease (CVD) by reducing blood pressure, platelet aggregation, cholesterol, and oxidation. Still, its vasodilator effects on the vascular system were not reported yet. The hexanic (HESh), dichloromethanic (DESh), and methanolic (MESh) extracts obtained from chía seeds were evaluated on an aortic ring ex-vivo experimental model. The vasorelaxant efficacy and mechanism of action were determined. Also, phytochemical data was obtained through 13C NMR-based dereplication. The MESh extract showed the highest efficacy (Emax = 87%), and its effect was partially endothelium-dependent. The mechanism of action was determined experimentally, and the vasorelaxant curves were modified in the presence of L-NAME, ODQ, and potassium channel blockers. MESh caused a relaxing effect on KCl 80 mM-induced contraction and was less potent than nifedipine. The CaCl2-induced contraction was significantly decreased compared with the control curve. Phytochemical analysis of MESh suggests the presence of mannitol, previously reported as a vasodilator on aortic rings. Our findings suggest NO-cGMP pathway participation as a vasodilator mechanism of action of S. hispanica seeds; this effect can be attributed, in part, to the mannitol presence. S. hispanica could be used in future research focused on antihypertensive therapies.


Assuntos
Salvia hispanica , Vasodilatadores , Vasodilatadores/farmacologia , Óxido Nítrico , Nifedipino
11.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995908

RESUMO

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Assuntos
Oxacilina , Staphylococcus aureus , Oxacilina/farmacologia , Oxacilina/análise , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/análise , Salvia hispanica , Antibacterianos/farmacologia , Sementes/química , Combinação de Medicamentos
12.
J Am Nutr Assoc ; 42(4): 403-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35604811

RESUMO

BACKGROUND: Obesity is an epidemic, multifactorial and difficult-to-control disease, besides being a risk factor for cardiovascular diseases. Among the multiple intervention proposals, the addition of chia in meals has been considered due to its composition and possible effects on weight loss and cardiovascular parameters. OBJECTIVE: We evaluate the influence of chia flour (Salvia hispanica L.) intake on body weight, body composition, energy expenditure (EE) and cardiovascular risk in obese women. METHODS: This study is a clinical trial performed with 20 adult women with obesity randomized into experimental (chia flour) and control (placebo) groups. We assessed anthropometric and biochemical measurements, as well as clinical, dietary and EE variables before intervention and 90 days later. RESULTS: There were no differences in anthropometric indicators, body composition or EE between groups, but a decrease in HDL-c (p = 0.049) and a trend towards the reduction of systolic blood pressure (SBP) (p = 0.062) was observed in the experimental group. CONCLUSION: Chia flour had a possible positive effect on SBP control, but negatively affected the lipid profile and did not seem to influence obesity control.


Assuntos
Salvia hispanica , Salvia , Adulto , Humanos , Feminino , Pressão Sanguínea , Farinha/análise , Salvia/química , Sementes/química , Obesidade , Redução de Peso , Lipídeos/análise
13.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432610

RESUMO

A direct correlation has been reported between excessive fat intake and the development and progression of various enteropathies. Plant foods may contain bioactive compounds and non-digestible dietary fiber, with potential to improve intestinal health. Chia is a good source of dietary fiber and bioactive compounds. Our study evaluated the role of chia flour associated with a high-fat diet (HFD) on colon histomorphometry, intestinal functionality and intestinal microbiome composition and function in Wistar rats. The study used 32 young male rats separated into four groups to receive a standard diet (SD) or HFD, with or without chia, for 35 days. At the end of the study, the cecum, cecal content and duodenum were collected. The consumption of chia increased the production of short-chain fatty acids and improved fecal moisture. Chia consumption improved the circular muscle layer in the SD group. The diversity and abundance of intestinal bacteria were not affected, but increased richness was observed in the microbiome of the SD+chia group. Moreover, chia consumption decreased the expression of proteins involved in intestinal functionality. Chia consumption improved intestinal morphology and functionality in young Wistar rats but was insufficient to promote significant changes in the intestinal microbiome in a short term of 35 days.


Assuntos
Dieta Hiperlipídica , Salvia , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Salvia hispanica , Sementes/química , Fibras na Dieta/farmacologia , Fibras na Dieta/análise
14.
Food Funct ; 13(21): 11249-11261, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222595

RESUMO

The purposes of the present study were to analyze liver inflammation and endothelial dysfunction in an experimental model of metabolic syndrome (MS) induced by chronic administration of a sucrose-rich diet (SRD) and to evaluate the effects of chia seed as a therapeutic strategy. Male Wistar rats were fed with a reference diet (RD) for 6 months or a SRD for 3 months. Then, the latter group was randomly divided into two subgroups. One subgroup continued receiving the SRD for up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as a source of dietary fat for the next 3 months (SRD + CHIA). Results showed that rats fed a SRD for a long period of time developed dyslipidemia, hyperglycemia, inflammation and endothelial dysfunction. Hepatic NAS, IL-1ß, NFκB p65, PAI-1, and F4-80 expression, as well as MPO activity were significantly increased and IL-10 expression was significantly decreased; this was accompanied by increased plasma IL-6 and TNF-α levels in rats fed a SRD. In addition, serum and liver nitric oxide (NO) levels and nitric oxide synthase (NOS) were significantly increased in the SRD group. In addition, a significant increase in hepatic iNOS expression and a positive correlation of this with liver NFκB p65 was found. We observed a significant increase in hepatic intercellular adhesion molecule (ICAM), and a negative correlation of this with liver Nrf2 was found. The administration of chia seed for 3 months reversed dyslipidemia, hyperglycemia, inflammation and endothelial dysfunction. In the liver tissue, NAS, IL-1ß, IL-10, NFκB p65, PAI-1, and F4-80 expression and MPO activity were normalized. Serum and liver NO and NOS levels and hepatic iNOS expression were decreased and this last one was associated with a decrease in liver NFκB p65 levels. Hepatic ICAM-1 was normalized and negatively correlated with liver NrF2 levels. This study showed new aspects of liver inflammation and endothelial dysfunction in dyslipidemic insulin resistant rats chronically fed with a sucrose-rich diet. In addition, we demonstrated new properties and molecular mechanisms associated with beneficial effects on inflammation and endothelial dysfunction of chia seed as a therapeutic strategy.


Assuntos
Dislipidemias , Hepatite , Hiperglicemia , Síndrome Metabólica , Salvia , Ratos , Masculino , Animais , Interleucina-10/metabolismo , Salvia hispanica , Fator 2 Relacionado a NF-E2/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Ratos Wistar , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sementes/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hepatite/metabolismo , Sacarose/metabolismo , Modelos Teóricos , Hiperglicemia/metabolismo
15.
Plant Foods Hum Nutr ; 77(4): 485-494, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083408

RESUMO

Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.


Assuntos
Salvia , Germinação , Sementes , Salvia hispanica , Antioxidantes , Fenóis , Compostos Fitoquímicos
16.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806294

RESUMO

Chia seed peptides (CSP) can be a source of multifunctional biopeptides to treat non-communicable diseases. However, interactions and binding affinity involved in targeting specific receptors remains unexplored. In this study, molecular simulation techniques were used as virtual screening of CSP to determine drug-like candidates using a multi-target-directed ligand approach. CSP fraction with the best bioactivities in vitro was sequenced. Then, a prediction model was built using physicochemical descriptors (hydrophobicity, hydrophilicity, intestinal stability, antiangiogenic, antihypertensive, and anti-inflammatory) to calculate potential scores and rank possible biopeptides. Furthermore, molecular dynamics simulations (MDS) and ensemble molecular docking analysis were carried out using four human protein targets (ACE, angiotensin converting enzyme; VEGF, vascular endothelial growth factor; GLUC, glucocorticoid and MINC, mineralocorticoid receptors). Five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR, GSRFDWTR) and five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF) had the lowest energy score and higher affinity for ACE and VEGF. The therapeutic effects of these selected peptides can be related to the inhibition of the enzymes involved in angiogenesis and hypertension, due to formation of stable complexes with VEGF and ACE binding sites, respectively. The application of MDS is a good resource for identifying bioactive peptides for future experimental validation.


Assuntos
Salvia hispanica , Salvia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Extratos Vegetais , Salvia/química , Fator A de Crescimento do Endotélio Vascular
17.
Food Res Int ; 156: 111164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651030

RESUMO

Given obesity and its associated metabolic disorders have reached epidemic proportions, the study of therapeutic strategies targeting white adipose tissue (WAT) are of main research interest. We previously shown that α-linolenic acid-rich chia seed was able to ameliorate a wide range of metabolic disorders including body fat accretion in sucrose-rich diet (SRD)-fed rats, an experimental model of visceral adiposity and insulin resistance. However, the mechanisms involved are not fully clarified. The aim of this study was to evaluate the effect of chia seed administration upon WAT remodeling and key enzymes that controls lipolysis, insulin signaling (tAKT, pAKT), and GLUT-4 levels in different visceral fat pad depots (epididymal -eWAT- and retroperitoneal -rWAT- adipose tissues) of SRD-fed rats. Results showed that chia seed reduces adipocytes hypertrophy, the increased lipid content and collagen deposition in both WAT. These changes were accompanied by a significant reduction of HSL and ATGL protein levels in eWAT and HSL protein levels in rWAT. Moreover, chia seed restored the altered expression pattern of the pAKT observed in SRD-fed rats, and modulated GLUT-4 levels. Chia seed could be a dietary intervention of great relevance with potential beneficial effects in the management of body fat excess and WAT function.


Assuntos
Salvia , Ácido alfa-Linolênico , Adiposidade , Animais , Colágeno , Dieta , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Extratos Vegetais , Ratos , Ratos Wistar , Roedores/metabolismo , Salvia/metabolismo , Salvia hispanica , Ácido alfa-Linolênico/farmacologia
18.
Food Funct ; 13(13): 7333-7345, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726830

RESUMO

The aim of this study was to analyze the liver injury and oxidative stress in an experimental model of Metabolic Syndrome (MS) induced by chronic administration of a sucrose-rich diet (SRD) and to evaluate the effects of chia seed as a therapeutic strategy. Male Wistar rats were fed with a reference diet (RD) -6 months- or a SRD -3 months. Then, the latter group was randomly divided into two subgroups. One subgroup continued receiving the SRD for up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as a source of dietary fat for the next 3 months (SRD+CHIA). The results showed that rats fed with a SRD for a long period of time developed dyslipidemia, hyperglycemia, hepatic lipid accumulation, liver injury, hepatic lipid peroxidation and oxidative stress. Hepatic NrF2 expression was significantly decreased. In addition, a significant increase in hepatic NFκB p65 expression and a positive correlation of this with plasma TNFα levels were found. The administration of chia seed for 3 months reversed dyslipidemia, hyperglycemia, lipid accumulation, liver injury, lipid peroxidation and oxidative stress. In the liver tissue, NrF2 expression was normalized and NFκB p65 expression was decreased, the latter was associated with a decrease in plasma TNFα levels. The present study showed new aspects of liver damage, lipid peroxidation and oxidative stress in dyslipidemic insulin resistant rats chronically fed with a sucrose-rich diet. However, we demonstrated new properties and molecular mechanisms associated with the beneficial anti-oxidant effects of chia seed consumption.


Assuntos
Dislipidemias , Hiperglicemia , Salvia , Animais , Dieta , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Hiperglicemia/metabolismo , Lipídeos , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Salvia/metabolismo , Salvia hispanica , Sementes/metabolismo , Sacarose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Food Funct ; 13(3): 1370-1379, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35044402

RESUMO

Among vegetable oils, chia oil has been gaining interest in recent years due to its high linolenic acid content (ALA, 18:3 ω3). The aim of this work was to study the influence of the particle size of encapsulated purified chia oil (PCO) on the encapsulation efficiency and PCO release during in vitro digestion. PCO micro- and nano-sized particles with sodium alginate (SA) as an encapsulating agent (ME-PCO-SA and NE-PCO-SA) were designed by micro and nano spray-drying, respectively, applying a central composite plus star point experimental design. NE-PCO-SA showed a smaller particle size and higher encapsulation efficiency of PCO than ME-PCO-SA (0.16 µm vs. 3.5 µm; 98.1% vs. 92.0%). Emulsions (NE-PCO and ME-PCO) and particles (NE-PCO-SA and ME-PCO-SA) were subjected to in vitro static gastrointestinal digestion. ME-PCO and NE-PCO showed sustained oil release throughout the three phases of digestion (oral, gastric and intestinal phases), whereas the PCO release from ME-PCO-SA and NE-PCO-SA occurred mainly in the intestinal phase, showing the suitability of sodium alginate as an intestine-site release polymer. Nano-sized particles showed a significantly higher PCO release after in vitro digestion (NE-PCO-SA, 78.4%) than micro-sized particles (ME-PCO-SA, 69.8%), and also higher bioaccessibility of individual free fatty acids, such as C18:3 ω-3 (NE-PCO-SA, 23.6%; ME-PCO-SA, 7.9%), due to their greater surface area. However, when ME-PCO-SA and NE-PCO-SA were incorporated into yogurt, the PCO release from both particle systems after the digestion of the matrix was similar (NE-PCO-SA, 58.8%; ME-PCO-SA-Y, 61.8%), possibly because the calcium ions contained in the yogurt induced partial ionic gelation of SA, impairing the PCO release. Sodium alginate spray-dried micro and nanoparticles showed great potential for vehiculation of omega-3 rich oils in the design of functional foods.


Assuntos
Digestão/efeitos dos fármacos , Óleos de Plantas/farmacologia , Salvia hispanica , Alginatos/química , Alimento Funcional , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Nanopartículas , Óleos de Plantas/química
20.
Rev. bras. zootec ; 51: e20220005, 2022. tab
Artigo em Inglês | VETINDEX | ID: biblio-1442887

RESUMO

Two experiments were carried with broilers from 29 to 42 days of age for the nutritional evaluation of dietary chia. Thus, the nitrogen-corrected apparent metabolizable energy (AMEn) and the apparent metabolizability coefficients of gross energy and ether extract of chia seeds and oil, toasted soybean grain (TSG), and soybean oil were determined in the experiment I, by total excreta collection method, using 120 broilers. Each experimental diet (reference diet [RD] and four diets with the tested feedstuffs) was evaluated in eight replicates of three broilers. The TSG and chia seeds replaced the RD in 250 g/kg, whereas soybean and chia oils replaced the RD in 100 g/kg. Simultaneously, a second experiment was carried subdivided into two trials. In the performance trial, we evaluated the dietary feedstuffs effects on performance, carcass and cut yields, blood parameters, and activity of lipogenic enzymes. The nutrient metabolizability coefficients and AMEn were evaluated in the metabolism trial. The AMEn values of 37.49, 37.35, 15.85, and 8.43 MJ/kg of dry matter were determined for chia oil, soybean oil, TSG, and chia seeds, respectively (experiment I). In the second experiment, the best feed conversion was observed in broilers fed diets containing chia oil and TSG. However, the diet formulated with chia seeds worsened broiler feed conversion, exhibited the smaller energy value and apparent metabolizability coefficient of the ether extract, and increased the activity of the malic enzyme and serum total cholesterol level. There was no difference for glucose-6-phosphate dehydrogenase activity and high-density lipoprotein cholesterol level. In general, chia oil showed to be efficient in replacing soybean oil in broiler diets.(AU)


Assuntos
Animais , Galinhas/fisiologia , Salvia hispanica/química , Fenômenos Fisiológicos da Nutrição Animal , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA