RESUMO
Due to the utilization of milk proteins such as whey protein (WP) and casein as sports nutrition ergogenic aids, the present study investigated the effects of the association of WP and casein in a ratio of 80:20, a similar ratio of human breast milk, on blood branched-chain amino acid (BCAA) profiles, markers of protein metabolism and delayed onset muscle soreness (DOMS), after a single bout of resistance exercise. A double-blind, crossover and acute study was carried out with ten men (age 29 ± 8 years; BMI: 25.4 ± 2.9 kg/m2; 77 ± 12 kg; 1.74 ± 0.09 m); each one consumed the following supplements randomly, one per session: WP, CAS (casein), WP/CAS (80% WP/20% CAS), CAS/WP (80% CAS/20% WP) and PLA (placebo). They were also subjected to the following evaluations: the one repetition maximum (1RM) test; resistance training session; blood extraction during each session to determine the BCAA profile; two food records; 3-day evaluation of DOMS (24 h, 48 h and 72 h) and nitrogen balance in each treatment. The intervention resulted in similar nitrogen urinary, creatinine and urea plasma levels and showed a positive nitrogen balance in all the trials. Regarding the BCAAs, the peak occurred at 60 min post-ingestion and remained higher until 120 min for WP, WP/CAS and CAS/WP. The DOMS was significantly lower for WP, WP/CAS and CAS/WP compared to the CAS and PLA treatments. There were no advantages in the association of WP and CAS in the BCAAs profile when compared to WP itself, but it induced a lower DOMS compared to CAS and PLA (Clinical Trial registration number: clinicaltrials.gov, NCT04648384).
Assuntos
Caseínas/análise , Exercício Físico/fisiologia , Leite Humano/química , Proteínas do Soro do Leite/análise , Adulto , Aminoácidos de Cadeia Ramificada/análise , Biomarcadores/metabolismo , Humanos , Masculino , Mialgia/patologiaRESUMO
Resistance training (RT)-induced skeletal muscle hypertrophy is a highly intricate process. Despite substantial advances, we are far from understanding exactly how muscle hypertrophy develops during RT. The aim of the present review is to discuss new insights related to the role of skeletal muscle damage and muscle protein synthesis (MPS) in mediating RT-induced hypertrophy. Specifically, the thesis that in the early phase of RT (≤ 4 previous RT sessions) increases in muscle cross-sectional area are mostly attributable to muscle damage-induced muscle swelling; then (after ~ 10 sessions), a modest magnitude of muscle hypertrophy ensues; but only during a latter phase of RT (after ~ 18 sessions) is true muscle hypertrophy observed. We argue that the initial increases in MPS post-RT are likely directed to muscle repair and remodelling due to damage, and do not correlate with eventual muscle hypertrophy induced by several RT weeks. Increases in MPS post-RT session only contribute to muscle hypertrophy after a progressive attenuation of muscle damage, and even more significantly when damage is minimal. Furthermore, RT protocols that do not promote significant muscle damage still induce similar muscle hypertrophy and strength gains compared to conditions that do promote initial muscle damage. Thus, we conclude that muscle damage is not the process that mediates or potentiates RT-induced muscle hypertrophy.
Assuntos
Proteínas Musculares/biossíntese , Músculo Esquelético/fisiologia , Mialgia/fisiopatologia , Condicionamento Físico Humano/efeitos adversos , Humanos , Hipertrofia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mialgia/etiologia , Mialgia/patologiaRESUMO
BACKGROUND: Malaria and dengue are two of the most common vector-borne diseases in the world, but co-infection is rarely described, and immunologic comparisons of co-infection with mono-infection are lacking. METHODOLOGY AND PRINCIPAL FINDINGS: We collected symptom histories and blood specimens from subjects in a febrile illness surveillance study conducted in Iquitos and Puerto Maldonado, Peru, between 2002-2011. Nineteen symptoms and 18 immune markers at presentation were compared among those with co-infection with Plasmodium/dengue virus (DENV), Plasmodium mono-infection, and DENV mono-infection. Seventeen subjects were identified as having Plasmodium/DENV co-infection and were retrospectively matched with 51 DENV mono-infected and 44 Plasmodium mono-infected subjects. Those with Plasmodium mono-infection had higher levels of IL-4, IL-6, IL-10, IL-12, IL-13, IL-17A, IFN-γ, and MIP1-α/CCL3 compared with DENV mono-infection or co-infection; those with Plasmodium mono-infection had more cough than those with DENV mono-infection. Subjects with DENV mono-infection had higher levels of TGF-ß1 and more myalgia than those with Plasmodium mono-infection. No symptom was more common and no immune marker level was higher in the co-infected group, which had similar findings to the DENV mono-infected subjects. CONCLUSIONS/SIGNIFICANCE: Compared with mono-infection with either pathogen, Plasmodium/DENV co-infection was not associated with worse disease and resembled DENV mono-infection in both symptom frequency and immune marker level.
Assuntos
Biomarcadores/sangue , Coinfecção/patologia , Dengue/complicações , Dengue/patologia , Malária/complicações , Malária/patologia , Adolescente , Adulto , Criança , Tosse/patologia , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mialgia/patologia , Peru , Estudos Retrospectivos , Adulto JovemRESUMO
Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acupuncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10(-/-)) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation.