Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.622
Filtrar
1.
Food Chem ; 462: 140920, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208732

RESUMO

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Assuntos
Lipopolissacarídeos , Macrófagos , Estresse Oxidativo , Extratos Vegetais , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Espectrometria de Massas em Tandem
2.
Chem Biol Drug Des ; 104(4): e14615, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358207

RESUMO

The higher prevalence of cancer and the unmet need for antioxidant/anti-inflammatory chemotherapeutic compounds with little side effect are of utmost importance. In addition, the increased likelihood of failure in clinical trials along with increasing development costs may have diminished the range of choices among newer drugs for clinical use. This has dictated the necessity to seek out novel medications by repurposing as it needs less time, effort, and resources to explore new uses of a current or unsuccessful medication. In this study, we examined the biological activity of 10 potential quinoline derivatives. Given the half-maximal inhibitory concentration (IC50 value) in lipopolysaccharide (LPS) induced inflammation of RAW264.7 mouse macrophages, all commercial FQs and selected quinolines (quinoline-4-carboxlic and quinoline-3-carboxylic acids) exerted impressively appreciable anti-inflammation affinities versus classical NSAID indomethacin without related cytotoxicities in inflamed macrophages. Conversely, all 14 tested compounds lacked antioxidative DPPH radical scavenging capacities as compared to ascorbic acid. Gemifloxacin, considerably unlike markets FQs, indomethacin and quinoline derivatives, exerted exceptional and differential antiproliferation propensities in colorectum SW480, HCT116, and CACO2, pancreatic PANC1, prostate PC3, mammary T47D, lung A375, and melanoma A549 adherent monolayers using the sulforhodamine B colorimetric method versus antineoplastic cisplatin. All quinoline derivatives and gemifloxacin alike, but not levofloxacin, ciprofloxacin, or indomethacin, displayed substantially selective viability reduction affinities in prolonged tumor incubations of cervical HELA and mammary MCF7 cells. Specifically kynurenic acid (hydrate), quinoline-2-carboxylic acid, quinoline-4-carboxylic acid, quinoline-3-carboxylic acid, and 1,2-dihydro-2-oxo-4-quinoline carboxylic acids possessed the most remarkable growth inhibition capacities against mammary MCF7 cell line, while quinoline-2-carboxylic acid was the only quinoline derivative with significant cytotoxicity on cervical HELA cancer cells. It is highly speculated that chelation with divalent metals via co-planarity with close proximity of the COOH and the N atom could have the potential molecular mechanism for optimally promising repurposed pharmacologies. Conclusively, this study revealed the considerably profound repurposed duality of cytotoxicity and anti-inflammation pharmacologies of quinoline derivatives. Activity-guided structural modifications of the present nuclear scaffolds can be inherently linked to the betterment and enhancement of their repurposed pharmacologies.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Ácidos Carboxílicos , Proliferação de Células , Quinolinas , Quinolinas/química , Quinolinas/farmacologia , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipopolissacarídeos/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade
3.
BMC Musculoskelet Disord ; 25(1): 769, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354427

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by chronic inflammation and progressive cartilage degradation, ultimately leading to joint dysfunction and disability. Oleocanthal (OC), a bioactive phenolic compound derived from extra virgin olive oil, has garnered significant attention due to its potent anti-inflammatory properties, which are comparable to those of non-steroidal anti-inflammatory drugs (NSAIDs). This study pioneers the investigation into the effects of OC on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway in OA, aiming to validate its efficacy as a functional food-based therapeutic intervention. METHODS: To simulate cartilage tissue in vitro, human bone marrow-derived mesenchymal stem cells (BMSCs) were differentiated into chondrocytes. An inflammatory OA-like environment was induced in these chondrocytes using lipopolysaccharide (LPS) to mimic the pathological conditions of OA. The therapeutic effects of OC were evaluated by treating these inflamed chondrocytes with various concentrations of OC. The study focused on assessing key inflammatory markers, catabolic enzymes, and mitochondrial function to elucidate the protective mechanisms of OC. Mitochondrial function, specifically mitochondrial membrane potential (ΔΨm), was assessed using Rhodamine 123 staining, a fluorescent dye that selectively accumulates in active mitochondria. The integrity of ΔΨm serves as an indicator of mitochondrial and bioenergetic function. Additionally, Western blotting was employed to analyze protein expression levels, while real-time polymerase chain reaction (RT-PCR) was used to quantify gene expression of inflammatory cytokines and catabolic enzymes. Flow cytometry was utilized to measure cell viability and apoptosis, providing a comprehensive evaluation of OC's therapeutic effects on chondrocytes. RESULTS: The results demonstrated that OC significantly downregulated PAR-2 expression in a dose-dependent manner, leading to a substantial reduction in pro-inflammatory cytokines, including TNF-α, IL-1ß, and MCP-1. Furthermore, OC attenuated the expression of catabolic markers such as SOX4 and ADAMTS5, which are critically involved in cartilage matrix degradation. Importantly, OC was found to preserve mitochondrial membrane potential (ΔΨm) in chondrocytes subjected to inflammatory stress, as evidenced by Rhodamine 123 staining, indicating a protective effect on cellular bioenergetics. Additionally, OC modulated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Receptor Activator of Nuclear Factor Kappa-Β (RANK) pathway, suggesting a broader therapeutic action against the multifactorial pathogenesis of OA. CONCLUSIONS: This study is the first to elucidate the modulatory effects of OC on the PAR-2 mediated inflammatory pathway in OA, revealing its potential as a multifaceted therapeutic agent that not only mitigates inflammation but also protects cartilage integrity. The preservation of mitochondrial function and modulation of the RANKL/RANK pathway further underscores OC's comprehensive therapeutic potential in counteracting the complex pathogenesis of OA. These findings position OC as a promising candidate for integration into nutritional interventions aimed at managing OA. However, further research is warranted to fully explore OC's therapeutic potential across different stages of OA and its long-term effects in musculoskeletal disorders.


Assuntos
Anti-Inflamatórios , Condrócitos , Monoterpenos Ciclopentânicos , Células-Tronco Mesenquimais , Osteoartrite , Receptor PAR-2 , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Receptor PAR-2/metabolismo , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Células Cultivadas , Alimento Funcional , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Lipopolissacarídeos/farmacologia , Aldeídos , Fenóis
4.
Front Immunol ; 15: 1447536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224602

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.


Assuntos
Polpa Dentária , Vesículas Extracelulares , Imunomodulação , Inflamação , NF-kappa B , Polpa Dentária/citologia , Polpa Dentária/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Animais , Inflamação/imunologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células Cultivadas , Transdução de Sinais , Células-Tronco/imunologia , Células-Tronco/metabolismo , Masculino
5.
Front Neural Circuits ; 18: 1435507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268349

RESUMO

The L-type Ca2+ channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors. DNA methylation, a significant epigenetic modification, plays a regulatory role in the pathogenesis of psychiatric disorders such as posttraumatic stress disorder (PTSD), depression, and autism. In our study, we observed reduced Dnmt3a expression levels in the hippocampal DG region of mice with LPS-induced depression compared to control mice. The antidepressant Venlafaxine was able to increase Dnmt3a expression levels. Conversely, Bay K 8644, an agonist of the L-type Ca2+ channel, partially ameliorated depression-like behaviors but did not elevate Dnmt3a expression levels. Furthermore, when we manipulated DNA methylation levels during Bay K 8644 intervention in depression-like models, we found that enhancing the expression of Dnmt3a could improve LPS-induced depression/anxiety-like behaviors, while inhibiting DNA methylation exacerbated anxiety-like behaviors, the combined use of BAY K 8644 and L-methionine can better improve depressive-like behavior. These findings indicate that DNA methylation plays a role in the regulation of depression-like behaviors by the L-type Ca2+ channel, and further research is needed to elucidate the interactions between DNA methylation and L-type Ca2+ channels.


Assuntos
Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil) , Agonistas dos Canais de Cálcio , Canais de Cálcio Tipo L , Metilação de DNA , DNA Metiltransferase 3A , Depressão , Metionina , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Metionina/farmacologia , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Camundongos , Agonistas dos Canais de Cálcio/farmacologia , Metilação de DNA/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Modelos Animais de Doenças
6.
BMC Biotechnol ; 24(1): 62, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294631

RESUMO

Inflammation serves as an intricate defense mechanism for tissue repair. However, overactivation of TLR4-mediated inflammation by lipopolysaccharide (LPS) can lead to detrimental outcomes such as sepsis, acute lung injury, and chronic inflammation, often associated with cancer and autoimmune diseases. This study delves into the anti-inflammatory properties of "Aspergillus unguis isolate SP51-EGY" on LPS-stimulated RAW 264.7 macrophages. Through real-time qPCR, we assessed the expression levels of pivotal inflammatory genes, including iNOS, COX-2, TNF-α, and IL-6. Remarkably, our fungal extracts significantly diminished NO production and showed noteworthy reductions in the mRNA expression levels of the aforementioned genes. Furthermore, while Nrf2 is typically associated with modulating inflammatory responses, our findings indicate that the anti-inflammatory effects of our extracts are not Nrf2-dependent. Moreover, the chemical diversity of the potent extract (B Sh F) was elucidated using Q-TOF LC-HRMS, identifying 54 compounds, some of which played vital roles in suppressing inflammation. Most notably, compounds like granisetron, fenofibrate, and umbelliprenin were found to downregulate TNF-α, IL-1ß, and IL-6 through the NF-κB signaling pathway. In conclusion, "Aspergillus unguis isolate SP51-EGY", isolated from the Red Sea, Egypt, has been unveiled as a promising TLR4 inhibitor with significant anti-inflammatory potentials, presenting novel insights for their potential therapeutic use in inflammation.


Assuntos
Anti-Inflamatórios , Aspergillus , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Aspergillus/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cromatografia Líquida/métodos , Inflamação/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Espectrometria de Massas , Interleucina-6/metabolismo , Interleucina-6/genética
7.
Mol Biol Rep ; 51(1): 996, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298057

RESUMO

BACKGROUND: The insoluble tangles of alpha-synuclein (α-syn) protein in the nigrostriatal circuit, characteristic of synucleinopathy, originate from low molecular weight oligomers, whose appearance and dissemination are related to neuroinflammation. These oligomeric forms of α-syn are considered highly cytotoxic but transient, so knowing the timing in which they appear remains challenging. Therefore, this study aimed to analyze the abundance of oligomeric forms of α-syn and tyrosine hydroxylase (TH) between 3 and 7 days after inducing neuroinflammation with lipopolysaccharide (LPS). METHODS AND RESULTS: LPS (2.5 µg/2.5 µL) was stereotaxically injected in the substantia nigra (SN) of adult male Wistar rats, which were sacrificed 3, 5 and 7 days after this intervention. The brains were processed for semi quantitative Western blot, along with brains from control and sham animals. Our results show an increased expression of α-syn monomer (15 kDa) only 3 days after LPS infusion, and the formation of 50 KDa and 60 kDa α-syn oligomers in the SN and striatum (STR) between 3 and 7 days after LPS infusion. Furthermore, the presence of these oligomers was accompanied by a decrease in the expression of nigral TH. CONCLUSION: These findings highlight the rapidity with which potentially toxic forms of α-syn appear in the nigrostriatal circuit after a neuroinflammatory challenge, in addition to allowing us to identify specific oligomers and a temporal relation with neurodegeneration of TH-positive cells. Knowledge of the timing and location in which these small oligomers appear is essential to developing therapeutic strategies to prevent its formation.


Assuntos
Lipopolissacarídeos , Ratos Wistar , Substância Negra , Tirosina 3-Mono-Oxigenase , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo
8.
Cell Mol Life Sci ; 81(1): 402, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276234

RESUMO

The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-ß (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-ß. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.


Assuntos
Endocitose , Inflamação , Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptor 4 Toll-Like , Tropomodulina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo , Tropomodulina/metabolismo , Tropomodulina/genética
9.
Cytokine ; 183: 156755, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39276536

RESUMO

UFMylation, a novel ubiquitin-like protein modification system, has been recently found to be activated in inflammation. However, the effects of UFMylation activation on inflammation in vivo remains unclear. In the present study, we generated a UFMylation activated mice using transgenic (TG) techniques. Lipopolysaccharide (LPS) was used to induce systemic inflammation in both TG and non-transgenic (NTG) mice. Serum cytokines were detected using a Mouse Cytokine Array, and the proportions of splenic NK, B and T cells were determined by using flow cytometry. We found that TG mice showed increased serum G-CSF, TNF RII and decreased serum TCA-3, CD30L, bFGF, IL-15 and MIG compared with NTG mice at baseline. Furthermore, serum cytokines in TG mice exhibited different responses to LPS compared to NTG mice. LPS up-regulated serum TNF RII, G-CSF, MCP-5, RANTES, KC, BLC, MIG and down-regulated IL-1b, IL-2, IL-3, IL-4, IL-5, IL-7, IL-10, IL-12p40, IL-15, IL-17, IFN-γ, TCA-3, Eotaxin-2, LIX, MCP-1, TNFα, GM-CSF in NTG mice, whereas LPS up-regulated G-CSF, MCP-5, RANTES, KC, BLC, MIG, ICAM-1, PF4, Eotaxin, CD30L, MIP-1a, TNFRI and down-regulated IL-1b, IL-3, LIX, MCP-1, TNFα, GM-CSF in TG mice. Data from flow cytometry indicated that LPS significantly reduced the percentages of NK and NKT cells in NTG mice, whereas UFMylation activation inhibited LPS-induced NKT cell decrease. The proportions of B cells, total CD4+ and total CD8+ T cells were comparable between TG and NTG mice in response to LPS treatment, whereas the percentages of CD4+CD69+ and CD8+CD69+T cells were lower in TG mice. These findings suggest that UFMylation may alter LPS-induced serum cytokine profile and participate in splenic T cell activation in vivo.


Assuntos
Citocinas , Lipopolissacarídeos , Ativação Linfocitária , Baço , Animais , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Citocinas/metabolismo , Citocinas/sangue , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/metabolismo , Baço/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia
10.
J Agric Food Chem ; 72(37): 20321-20330, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39229907

RESUMO

Bovine clinical mastitis is characterized by inflammation and immune responses, with apoptosis of mammary epithelial cells as a cellular reaction to infection. PIEZO1, identified as a mechanotransduction effector channel in nonruminant animals and sensitive to both mechanical stimuli or inflammatory signals like lipopolysaccharide (LPS). However, its role in inflammatory processes in cattle has not been well-documented. The aim of this study was to elucidate the in situ expression of PIEZO1 in bovine mammary gland and its potential involvement in clinical mastitis. We observed widespread distribution and upregulation of PIEZO1 in mammary epithelial cells in clinical mastitis cows and LPS-induced mouse models, indicating a conserved role across species. In vitro studies using mammary epithelial cells (MAC-T) revealed that LPS upregulates PIEZO1. Notably, the effects of PIEZO1 artificial activator Yoda1 increased apoptosis and NLRP3 expression, effects mitigated by PIEZO1 silencing or NLRP3 inhibition. In conclusion, the activation of the PIEZO1-NLRP3 pathway induces abnormal apoptosis in mammary epithelial cells, potentially serving as a regulatory mechanism to combat inflammatory responses to abnormal stimuli.


Assuntos
Apoptose , Células Epiteliais , Canais Iônicos , Lipopolissacarídeos , Mastite Bovina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Feminino , Apoptose/efeitos dos fármacos , Camundongos , Lipopolissacarídeos/farmacologia , Bovinos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mastite Bovina/genética , Mastite Bovina/metabolismo , Mastite Bovina/imunologia , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/genética , Inflamação/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/citologia , Mastite/imunologia , Mastite/genética , Mastite/metabolismo
11.
Pestic Biochem Physiol ; 204: 106104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277426

RESUMO

C-type lectins (CTLs) play a pivotal role in the regulation of insect immunity and growth, making them potential molecular targets for RNA interference (RNAi)-mediated pest control. Although multiple CTLs have been identified in the genomes of various insects, their specific functions and underlying molecular mechanisms remain unclear. In the present study, a novel CTL, Tcctl13 with a single CRD, was identified in Tribolium castaneum. Tcctl13 is expressed in diverse immune-related tissues and developmental stages, with a notable increase in its expression upon exposure to lipopolysaccharides (LPS) and peptidoglycan (PGN). Molecular docking and enzyme-linked immunosorbent assay (ELISA) analyses revealed that TcCTL13 possesses the ability interacted with LPS and PGN. The binding and agglutinating activities of recombinant TcCTL13 (rTcCTL13) were demonstrated against both gram-negative and positive bacteria. After using RNAi to silence Tcctl13, the expression of the eight antimicrobial peptide (AMP) genes was significantly reduced. In addition, knocking down Tcctl13 during the early larval or pupal stage hindered, the normal metamorphosis process in T. castaneum, ultimately leading to the demise of all beetles. Further research showed that Tcctl13 and nine AMPs were significantly downregulation after 20-Hydroxyecdysone (20E) injection. Instead, the up-regulation of Tcctl13 and six AMPs was observed following interference with the 20E receptor (ecdysone receptor, EcR), indicating that the function of Tcctl13 is regulated by 20E in T. castaneum. Collectively, these findings suggest that Tcctl13 plays a role in the regulation of innate immunity and development in T. castaneum, offering a promising molecular target for managing insect pests using RNAi-based approaches.


Assuntos
Imunidade Inata , Proteínas de Insetos , Interferência de RNA , Tribolium , Animais , Tribolium/genética , Tribolium/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipopolissacarídeos/farmacologia , Peptidoglicano , Larva
12.
Biomed Pharmacother ; 179: 117358, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278188

RESUMO

Sodium houttuyfonate (SH), derived from the widely utilized natural herb Houttuynia cordata, exhibits an effective therapeutic effect on various diseases, including bacterial and fungal infections, especially the respiratory tract infection. Therefore, the anti-microbial mechanisms of SH may be different from the single-target action mechanism of conventional antibiotics, and further research is needed to clarify this. Firstly, we discovered that SH can effectively intervene in mouse lung infections by reducing bacterial load and acute inflammation response related to pneumonia caused by Pseudomonas aeruginosa. Interestingly, our results confirmed that SH has surface activity and can directly induce changes in the cell wall the shedding of surface lipopolysaccharide (LPS). Additionally, we found that SH-induced shedding of LPS can induce M1 polarization of macrophages in the early stage, leading to the production of corresponding polarization effector molecules. Subsequently, we discovered that SH-induced M1 polarization cells can effectively phagocytose and kill bacterial cells. The protein expression results indicated that SH can enhance the expression of M1 polarization pathway of TLR4/MyD88/NF-κB during the initial phase of macrophage and pathogen interaction. In summary, our results imply that SH could directly induce the shedding of P. aeruginosa LPS in a surfactant-like manner. Afterwards, the SH induced abscisic LPS can initiate the TLR4/MyD88/NF-κB immune pathway to trigger the M1 polarization of macrophages, which might intervene the P. aeruginosa-caused acute lung infection at early stage. Based on these findings, we attempted to coin the term "immune feedback eradication mechanism against pathogen of natural product" to describe this potent antimicrobial mechanism of SH.


Assuntos
Lipopolissacarídeos , Macrófagos , Pseudomonas aeruginosa , Sulfitos , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfitos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Receptor 4 Toll-Like/metabolismo , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Alcanos/farmacologia , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fagocitose/efeitos dos fármacos , Antibacterianos/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
J Agric Food Chem ; 72(38): 20930-20943, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39279192

RESUMO

The probiotic properties of Lactobacillus reuteri (L. reuteri) and its impact on immune function are well-documented. Lipoteichoic acid (LTA) is a crucial immune molecule in Gram-positive bacteria. Despite extensive research on LTA's structural diversity, the immunomodulatory mechanisms of L. reuteri LTA remain largely unexplored. This study investigates the immunomodulatory effects of L. reuteri L1 LTA at various concentrations on RAW 264.7 cells and mice under normal and inflammatory conditions. We found that LTA does not significantly affect healthy subjects; however, low-concentration LTA can reduce inflammation induced by LPS in cells and mice, enhancing the abundance of dominant intestinal bacteria. In contrast, high-concentration LTA exacerbates intestinal damage and dysbiosis. Creatinine may play a role in this differential response. In summary, while LTA does not alter immune homeostasis in healthy organisms, low-concentration LTA may mitigate damage from immune imbalance, but high-concentration LTA can worsen it. This suggests a quantitative requirement for probiotic intake. Our study provides critical theoretical support for understanding the immunomodulatory effects of probiotics on the host and paves the way for future research into the immune mechanisms of probiotics.


Assuntos
Limosilactobacillus reuteri , Lipopolissacarídeos , Probióticos , Ácidos Teicoicos , Ácidos Teicoicos/farmacologia , Animais , Camundongos , Limosilactobacillus reuteri/imunologia , Limosilactobacillus reuteri/química , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Probióticos/farmacologia , Probióticos/administração & dosagem , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Humanos , Masculino , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos C57BL , Feminino
14.
Cell Death Dis ; 15(9): 677, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285161

RESUMO

Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages. We analysed the contribution of A1 to apoptosis regulation in a conditional system of in vitro differentiation of murine macrophages from immortalised progenitors. We disabled the expression of A1 by targeting all murine A1 isoforms in the genome. Specific inhibitors were used to inactivate other anti-apoptotic proteins. Macrophage progenitor survival mainly depended on the anti-apoptotic proteins MCL-1, BCL-XL and A1 but not BCL-2. Deletion of A1 on its own had little effect on progenitor cell survival but was sensitised to cell death induction when BCL-XL or MCL-1 was neutralised. In progenitors, A1 was required for survival in the presence of the inflammatory stimulus LPS. Differentiated macrophages were resistant to inhibition of single anti-apoptotic proteins, but A1 was required to protect macrophages against inhibition of either BCL-XL or MCL-1; BCL-2 only had a minor role in these cells. Cell death by neutralisation of anti-apoptotic proteins completely depended on BAX with a small contribution of BAK only in progenitors in the presence of LPS. A1 and NOXA appeared to stabilise each other at the posttranscriptional level suggesting direct binding. Co-immunoprecipitation experiments showed the binding of A1 to NOXA and BIM. Interaction between A1 and Noxa may indirectly prevent neutralisation and destabilization of MCL-1. Our findings suggest a unique role for A1 as a modulator of survival in the macrophage lineage in concert with MCL-1 and BCL-XL, especially in a pro-inflammatory environment.


Assuntos
Apoptose , Diferenciação Celular , Sobrevivência Celular , Macrófagos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína bcl-X , Animais , Proteína bcl-X/metabolismo , Macrófagos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Lipopolissacarídeos/farmacologia , Células Mieloides/metabolismo
15.
BMC Oral Health ; 24(1): 1156, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343901

RESUMO

BACKGROUND: Previous studies have reported the link between hypoxic conditions and NLRP3 inflammasome-mediated pulpal inflammation in the progression of pulpitis. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the role of HIF-1α in the regulation of NLRP3 inflammasome pathway via NF-κB signaling under hypoxic conditions with or without LPS in human dental pulp fibroblasts (HDPFs) during the progression of pulpitis. METHODS: HIF-1α plasmids or siRNAs were used to upregulate or downregulate HIF-1α in HDPFs, respectively. The effect of hypoxia with or without LPS on the NF-κB signaling and NLRP3 inflammasome pathway was analyzed by immunofluorescence staining, qRT-PCR, western blotting and ELISA. RESULTS: The hypoxic conditions alone induced ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling in a time-dependent manner in HDPFs. The upregulation of HIF-1α further promoted hypoxia-induced ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. In comparison, downregulation of HIF-1α inhibited ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. Additionally, LPS plus hypoxia further promoted HIF-1α expression and NLRP3/ASC/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. CONCLUSIONS: HIF-1α served as a positive regulator of NLRP3/ASC/CASP1 inflammasome pathway activation via NF-κB signaling in HDPFs in the sterile pulpal inflammation and caries-related pulpitis microenvironment. The finding of a novel functional HIF-1α-NF-κB-NLRP3 axis provides insight into the link between the hypoxic microenvironment and pulpal inflammation, thus supporting a promising therapeutic strategy for the control of pulpal inflammation.


Assuntos
Polpa Dentária , Fibroblastos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Humanos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibroblastos/metabolismo , NF-kappa B/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Hipóxia/metabolismo , Lipopolissacarídeos/farmacologia , Pulpite/metabolismo , Células Cultivadas , Western Blotting , Ensaio de Imunoadsorção Enzimática
16.
Nutrients ; 16(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275329

RESUMO

Heyndrickxia coagulans (formerly Bacillus coagulans) has been increasingly utilized as an immunomodulatory probiotics. Oral administration of H. coagulans HOM5301 significantly boosted both innate and adaptive immunity in mice, particularly by increasing the phagocytic capacity of monocytes/macrophages. Lipoteichoic acid (LTA), a major microbe-associated molecular pattern (MAMP) in Gram-positive bacteria, exhibits differential immunomodulatory effects due to its structural heterogeneity. We extracted, purified, and characterized LTA from H. coagulans HOM5301. The results showed that HOM5301 LTA consists of a glycerophosphate backbone. Its molecular weight is in the range of 10-16 kDa. HOM5301 LTA induced greater productions of nitric oxide, TNFα, and IL-6 in RAW 264.7 macrophages compared to Staphylococcus aureus LTA. Comparative transcriptome and proteome analyses identified the differentially expressed genes and proteins triggered by HOM5301 LTA. KEGG analyses revealed that HOM5301 LTA transcriptionally and translationally activated macrophages through two immune-related pathways: cytokine-cytokine receptor interaction and phagosome formation. Protein-protein interaction network analysis indicated that the pro-inflammatory response elicited by HOM5301 LTA was TLR2-dependent, possibly requiring the coreceptor CD14, and is mediated via the MAPK and NF-kappaB pathways. Our results demonstrate that LTA is an important MAMP of H. coagulans HOM5301 that boosts immune responses, suggesting that HOM5301 LTA may be a promising immunoadjuvant.


Assuntos
Lipopolissacarídeos , Macrófagos , Ácidos Teicoicos , Animais , Ácidos Teicoicos/farmacologia , Camundongos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Células RAW 264.7 , Bacillus , Receptor 2 Toll-Like/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Probióticos/farmacologia
17.
Pestic Biochem Physiol ; 204: 106066, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277382

RESUMO

Difenoconazole (DIF) is frequently used for the management of fungal infections in fruit and vegetables and excessive residues in the aquatic environment can have adverse effects on fish such as growth inhibition. A treatment based on the dietary additive quercetin (QUE) is a promising approach to positively regulate the state of fish growth. This study focused on whether and how QUE alleviated DIF-induced growth inhibition in fish. In this study, carp were exposed to DIF (0.3906 mg/L) for consecutive 30 d, which showed growth inhibition. Disruption of the intestinal barrier led to elevated levels of intestinal lipopolysaccharide (LPS) and an inflammatory response. Through the intestinal-brain axis, LPS entered the brain where it disrupted the blood-brain barrier, triggered neuroinflammation, caused brain cell apoptosis, and damaged nerves in addition to other things. The dietary supplementation of QUE (400 mg/kg) reduced the levels of LPS in the intestinal and brain, while reducing inflammation and increasing the expression of appetite factors, thereby reducing growth inhibition in carp. This work provided evidence for QUE from the intestinal-brain axis perspective as a potential candidate for alleviating growth inhibition in fish.


Assuntos
Encéfalo , Carpas , Dioxolanos , Intestinos , Quercetina , Animais , Carpas/metabolismo , Quercetina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Intestinos/efeitos dos fármacos , Dioxolanos/farmacologia , Triazóis/farmacologia , Lipopolissacarídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fungicidas Industriais/farmacologia
18.
Redox Rep ; 29(1): 2398891, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39284587

RESUMO

OBJECTIVE: The study will be to observe the effect of Sodium butyrate (NaB) on bone loss in lipopolysaccharide (LPS)-treated rats. METHODS: In the rat model, we observed that changes in the expression of oxidative stress regulators, inflammatory markers and target genes were measured by immunofluorescence and RT-PCR after treatment. Changes in viability and osteogenesis of MC3T3-E1, osteoclast differentiation in RAW264.7 cells in the presence of LPS were evaluated using CCK-8, ALP staining, RES staining, and TRAP staining. RESULTS: In vitro experiments have shown that LPS-induced inhibition of JC-1, SIRT1, GPX1 and SOD2 is associated with increased levels of inflammation and oxidative stress. In addition, NaB has been found to suppress oxidative stress, inflammation and Mito SOX, promote osteogenic differentiation, and inhibit osteoclast differentiation. In addition, NaB significantly promoted SITR1 expression, repaired impaired bone metabolism, and improved bone strength and bone mineral density. CONCLUSION: Given all this experimental evidence, the results strongly suggest that NaB can restore osteogenic activity in the presence of LPS by reducing intracellular ROS, inhibiting osteoclast differentiation and reducing bone loss in LPS-treated rat models.


Assuntos
Ácido Butírico , Inflamação , Lipopolissacarídeos , Estresse Oxidativo , Animais , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ácido Butírico/farmacologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Células RAW 264.7 , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
19.
J Biochem Mol Toxicol ; 38(10): e23845, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39267336

RESUMO

Macrophage polarization and inflammation may play an important role in the development of sepsis. T-cell immunoglobulin mucin 1 (TIM1) has been demonstrated to promote macrophage inflammatory responses. However, whether TIM1 regulates macrophage polarization and inflammation to affect sepsis development remains unclear. Human monocytic leukemia cell line was induced into macrophages, followed by stimulated with LPS and IL-4 to induce M1 polarization and M2 polarization. The expression levels of TIM1, methyltransferase 3 (METTL3), and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) were examined by qRT-PCR and western blot. IL-6, IL-1ß, and TNF-α levels were tested by ELISA. CD86+cell rate was analyzed by flow cytometry. The m6A methylation level of TIM1 was assessed by MeRIP assay. The interaction of between TIM1 and METTL3 or IGF2BP2 was assessed by dual-luciferase reporter assay and RIP assay. TIM1 knockdown repressed LPS-induced macrophage M1 polarization and inflammation. In terms of mechanism, METTL3 promoted TIM1 expression through m6A modification, and this modification could be recognized by IGF2BP2. Besides, knockdown of METTL3/IGF2BP2 suppressed LPS-induced macrophage M1 polarization and inflammation, while this effect could be eliminated by TIM1 overexpression. METTL3/IGF2BP2/TIM1 axis promoted macrophage M1 polarization and inflammation, which might provide potential target for sepsis treatment.


Assuntos
Receptor Celular 1 do Vírus da Hepatite A , Inflamação , Macrófagos , Metiltransferases , Proteínas de Ligação a RNA , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células THP-1 , Lipopolissacarídeos/farmacologia
20.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337381

RESUMO

Both DNA 5-methylcytosine (5mC) and RNA N6-methyladenosine (m6A) modifications are reported to participate in cellular stress responses including inflammation. Phosphoenolpyruvate carboxykinase 2 (PCK2) is upregulated in Kupffer cells (KCs) to facilitate the proinflammatory phosphorylation signaling cascades upon LPS stimulation, yet the role of 5mC and m6A in PCK2 upregulation remain elusive. Here, we report that the significantly augmented PCK2 mRNA and protein levels are associated with global 5mC demethylation coupled with m6A hypermethylation in LPS-activated KCs. The suppression of 5mC demethylation or m6A hypermethylation significantly alleviates the upregulation of PCK2 and proinflammatory cytokines in LPS-challenged KCs. Further reciprocal tests indicate 5mC demethylation is upstream of m6A hypermethylation. Specifically, CpG islands in the promoters of PCK2 and RNA methyltransferase (METTL3 and METTL14) genes are demethylated, while the 3'UTR of PCK2 mRNA is m6A hypermethylated, in LPS-stimulated KCs. These modifications contribute to the transactivation of the PCK2 gene as well as increased PCK2 mRNA stability and protein production via a m6A-mediated mechanism with IGF2BP1 as the reader protein. These results indicate that DNA 5mC and RNA m6A collaborate to upregulate PCK2 expression, respectively, at the transcriptional and post-transcriptional levels during KC activation.


Assuntos
5-Metilcitosina , Adenosina , Metilação de DNA , Células de Kupffer , Regulação para Cima , Células de Kupffer/metabolismo , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Lipopolissacarídeos/farmacologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Masculino , Regiões Promotoras Genéticas , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ilhas de CpG , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA