Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.746
Filtrar
1.
Biomaterials ; 313: 122773, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39217794

RESUMO

The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.


Assuntos
Alginatos , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Memória Imunológica , Imunoterapia Adotiva , Alginatos/química , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Imunoterapia Adotiva/métodos , Células Apresentadoras de Antígenos/imunologia , Memória Imunológica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos
2.
Methods Mol Biol ; 2857: 1-8, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39348050

RESUMO

Aging is a natural process that compromises the immune system's functionality increasing the risk of infectious, tumors, and autoimmune diseases. The thymus involution is an age-dependent process characterized by decreased cellularity, peripheral lymphocyte infiltration into the perivascular space, and expansion of adipose tissue. All those modifications hamper the functionality of the organ and lead to a decline of naïve T-cell production with a shrinking of the T-cell repertoire. Thymus atrophy is described in several disorders including autoimmune diseases. The quantification of T-cell receptor excision circles (TRECs) in recent thymus emigrants is a standard procedure to investigate the thymic function. In this chapter, we discuss the methodology used to quantify this molecule in peripheral blood mononuclear cells and isolated CD4+ and CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Timo , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Timo/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
3.
Methods Mol Biol ; 2857: 33-43, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39348053

RESUMO

Immunosenescence is a well-characterized phenomenon that occurs with increasing age in all immune and somatic cells. In order to best study immunosenescence, it is imperative to develop methods to accurately identify immunosenescent cells. Elderly patients are known to have impaired immune responses to respiratory viruses, and it is hypothesized that this is due, in part, to immunosenescent, terminally exhausted CD8+ T cells. To test this hypothesis, we developed an aged mouse model and a flow cytometry protocol using the Cytek® Aurora to assess the CD8+ T-cell response during respiratory viral infection and identify immunosenescent CD8+ T cells. This protocol and our aged mouse model have great potential to be incredibly valuable for future studies elucidating how to rejuvenate and possibly reverse immunosenescent CD8+ T cells, which could improve the immune response to respiratory viruses in this at-risk population.


Assuntos
Linfócitos T CD8-Positivos , Citometria de Fluxo , Imunossenescência , Infecções Respiratórias , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Citometria de Fluxo/métodos , Imunossenescência/imunologia , Modelos Animais de Doenças , Viroses/imunologia , Humanos
4.
Front Immunol ; 15: 1448653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355257

RESUMO

Background: Broad T cell phenotypic alterations and potential dysfunctions were prominent in COVID-19. There are few and inconclusive data about the role of immune checkpoints for T cell exhaustion/activation during SARS-CoV-2 infection in multiple myeloma (MM) patients. Methods: We tested T cell subsets and immune checkpoints in 177 MM patients with COVID-19, as well as in 32 healthy infected controls and 42 uninfected MM patients. The percentage of CD4+ and CD8+ subpopulation and immune checkpoints (PD-1, TIGIT, TIM-3, LAG-3, CTLA-4, OX40, and 4-1BB) were evaluated by flow cytometry. Results: We have found that pronounced lymphopenia and inverted CD4/CD8 ratio in severe COVID-19 patients were especially developed within the first month after infection. And T cell subset dysregulation was persistent in severe patients recovering from SARS-CoV-2 infection. Immune checkpoints on CD4+ T cells were variable and uncorrelated with the level of adaptive immunity, while the proportion of CD4+ T cells was positively correlated with humoral immune response. PD-1 and TIGIT on CD8+ T cells were significantly elevated in severe patients and sustained for more than 2 months, which was associated with impaired cellular immune function. Moreover, exhausted molecules PD-1 and TIGIT on T cells were reduced in immunotherapy patients. Conclusion: The prolonged T cell dysregulation after severe SARS-CoV-2 infection highlights the close surveillance from reinfection in MM patients even during convalescence. PD-1 and TIGIT on CD8+ T cells could be important prognostic factors to stratify prognosis in MM patients with COVID-19. Moreover, immunotherapy may downregulate the expression of exhausted checkpoints PD-1 and TIGIT, leading to T cell overactivation and severe COVID-19.


Assuntos
COVID-19 , Mieloma Múltiplo , SARS-CoV-2 , Humanos , COVID-19/imunologia , Mieloma Múltiplo/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Proteínas de Checkpoint Imunológico/metabolismo , Linfócitos T CD4-Positivos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Biomarcadores
5.
PLoS One ; 19(10): e0298472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39356699

RESUMO

Antiretroviral treatment of HIV infected individuals cannot eliminate the HIV reservoir and immune control of HIV is rarely seen upon treatment interruption. In long-term non-progressors (LTNP), an effective CD8 T cell response is thought to contribute to be immune control of HIV. Here we studied the transcriptional profile of virus specific CD8 T cells during the asymptomatic phase of disease, to gain molecular insights in CD8 T cell functionality in HIV progressors and different groups of LTNP: HLA-B*57 LTNP, non-HLA-B*57 LTNP and individuals carrying the MAVS minor genotype (rs7262903/rs7269320). Principal component analysis revealed distinct overall transcriptional profiles between the groups. The transcription profile of HIV-specific CD8 T cells of LTNP groups was associated with increased cytokine/IL-12 signaling and protein/RNA metabolism pathways, indicating an increased CD8 T cell functionality. Although the transcription profile of CMV-specific CD8 T cells differed from that of HIV-specific CD8 T cells, with mainly an upregulation of gene expression in progressors, similar affected pathways were identified. Moreover, CMV-specific CD8 T cells from progressors showed increased expression of genes related to effector functions and suggests recent antigen exposure. Our data shows that changes in cytokine signaling and the energy demanding RNA and protein metabolism are related to CD8 T cell dysfunction, which may indicate that mitochondrial dysfunction is an important driver of T cell dysfunctionality during chronic HIV infection. Indeed, improvement of mitochondrial function by IL-12 and mitoTempo treatment, enhanced in vitro IFNγ release by PBMC from PWH upon HIV gag and CMV pp65 peptide stimulation. Our study provides new insights into the molecular pathways associated with CD8 T cell mediated immune control of chronic HIV infection which is important for the design of novel treatment strategies to restore or improve the HIV-specific immune response.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/virologia , Masculino , Metabolismo Energético , Adulto , HIV-1/imunologia , RNA/genética , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Doença Crônica , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Pessoa de Meia-Idade
6.
Sci Adv ; 10(40): eadp8266, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39356756

RESUMO

The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Adaptadora de Sinalização NOD1 , Macrófagos Associados a Tumor , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Animais , Humanos , Camundongos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Microambiente Tumoral/imunologia
7.
Front Immunol ; 15: 1444639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359722

RESUMO

Introduction: We reported that Ca2+-independent phospholipase A2ß (iPLA2ß)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting ß-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods: CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2ß+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results: In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive ß-cells. Reduced iPLA2ß led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion: These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos NOD , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Fosfolipases A2 do Grupo VI/metabolismo , Fosfolipases A2 do Grupo VI/genética , Metabolismo dos Lipídeos , Camundongos SCID , Feminino
8.
Cancer Res ; 84(19): 3173-3188, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350665

RESUMO

Memory T cells play a key role in immune protection against cancer. Vaccine-induced tissue-resident memory T (TRM) cells in the lung have been shown to protect against lung metastasis. Identifying the source of lung TRM cells can help to improve strategies, preventing tumor metastasis. Here, we found that a prime-boost vaccination approach using intramuscular DNA vaccine priming, followed by intranasal live-attenuated influenza-vectored vaccine (LAIV) boosting induced higher frequencies of lung CD8+ TRM cells compared with other vaccination regimens. Vaccine-induced lung CD8+ TRM cells, but not circulating memory T cells, conferred significant protection against metastatic melanoma and mesothelioma. Central memory T (TCM) cells induced by the DNA vaccination were major precursors of lung TRM cells established after the intranasal LAIV boost. Single-cell RNA sequencing analysis indicated that transcriptional reprogramming of TCM cells for differentiation into TRM cells in the lungs started as early as day 2 post the LAIV boost. Intranasal LAIV altered the mucosal microenvironment to recruit TCM cells via CXCR3-dependent chemotaxis and induced CD8+ TRM-associated transcriptional programs. These results identified TCM cells as the source of vaccine-induced CD8+ TRM cells that protect against lung metastasis. Significance: Prime-boost vaccination shapes the mucosal microenvironment and reprograms central memory T cells to generate lung resident memory T cells that protect against lung metastasis, providing insights for the optimization of vaccine strategies.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Memória Imunológica , Neoplasias Pulmonares , Células T de Memória , Animais , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Camundongos , Células T de Memória/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Camundongos Endogâmicos C57BL , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Imunização Secundária/métodos , Vacinação/métodos , Feminino , Humanos , Administração Intranasal , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Pulmão/patologia
9.
Front Immunol ; 15: 1463971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351219

RESUMO

Introduction: In this study, we report a novel therapeutic approach redirecting antigen-specific CD4+ T cells recognizing a hybrid insulin peptide (BDC2.5 T cell receptor (TCR) transgenic CD4+ T cells) to attract and suppress islet-specific CD8+ T cells T cells in the non-obese diabetic (NOD) mouse model, and prevent the development of autoimmune diabetes. Methods: Purified BDC2.5 CD4+ T cells were induced to differentiate into regulatory T cells (Tregs). The Tregs were then electroporated with mRNA encoding chimeric human ß2 microglobulin (hß2m) covalently linked to insulin B chain amino acids 15-23 (designated INS-eTreg) or islet-specific glucose-6-phosphatase related protein (IGRP) peptide 206-214 (designated IGRP-eTreg). Immunoregulatory functions of these engineered regulatory T cells (eTregs) were tested by in vitro assays and in vivo co-transfer experiments with ß-cell-antigen-specific CD8+ T cells in NOD.Scid mice or by adoptive transfer into young, pre-diabetic NOD mice. Results: These eTregs were phenotyped by flow cytometry, and shown to have high expression of FoxP3, as well as other markers of Treg function, including IL-10. They suppressed polyclonal CD4+ T cells and antigen-specific CD8+ T cells (recognizing insulin or IGRP), decreasing proliferation and increasing exhaustion and regulatory markers in vitro. In vivo, eTregs reduced diabetes development in co-transfer experiments with pathogenic antigen-specific CD8+ T cells (INS-CD8+ or IGRP-CD8+ cells) into NOD.Scid mice. Finally, when the eTreg were injected into young NOD mice, they reduced insulitis and prevented spontaneous diabetes in the recipient mice. Conclusion: Our results suggest a novel therapeutic strategy to protect NOD mice by targeting antigen-specific cytotoxic CD8+ T cells, using redirected antigen-specific CD4+ Treg cells, to suppress autoimmune diabetes. This may suggest an innovative therapy for protection of people at risk of development of type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Camundongos Endogâmicos NOD , Linfócitos T Reguladores , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Camundongos , Humanos , Feminino , Camundongos SCID , Insulina/imunologia , Transferência Adotiva , Camundongos Transgênicos , Glucose-6-Fosfatase/imunologia , Glucose-6-Fosfatase/genética , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
10.
Oncoimmunology ; 13(1): 2407532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351443

RESUMO

Immunotherapy has emerged as a promising approach for cancer treatment, with oncolytic adenoviruses showing power as immunotherapeutic agents. In this study, we investigated the immunotherapeutic potential of an adenovirus construct expressing CXCL9, CXCL10, or IL-15 in clear cell renal cell carcinoma (ccRCC) tumor models. Our results demonstrated robust cytokine secretion upon viral treatment, suggesting effective transgene expression. Subsequent analysis using resistance-based transwell migration and microfluidic chip assays demonstrated increased T-cell migration in response to chemokine secretion by infected cells in both 2D and 3D cell models. Flow cytometry analysis revealed CXCR3 receptor expression across T-cell subsets, with the highest percentage found on CD8+ T-cells, underscoring their key role in immune cell migration. Alongside T-cells, we also detected NK-cells in the tumors of immunocompromised mice treated with cytokine-encoding adenoviruses. Furthermore, we identified potential immunogenic antigens that may enhance the efficacy and specificity of our armed oncolytic adenoviruses in ccRCC. Overall, our findings using ccRCC cell line, in vivo humanized mice, physiologically relevant PDCs in 2D and patient-derived organoids (PDOs) in 3D suggest that chemokine-armed adenoviruses hold promise for enhancing T-cell migration and improving immunotherapy outcomes in ccRCC. Our study contributes to the development of more effective ccRCC treatment strategies by elucidating immune cell infiltration and activation mechanisms within the tumor microenvironment (TME) and highlights the usefulness of PDOs for predicting clinical relevance and validating novel immunotherapeutic approaches. Overall, our research offers insights into the rational design and optimization of viral-based immunotherapies for ccRCC.


Assuntos
Adenoviridae , Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Humanos , Animais , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Camundongos , Adenoviridae/genética , Adenoviridae/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Imunoterapia/métodos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/imunologia , Movimento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/imunologia , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linfócitos T CD8-Positivos/imunologia
11.
Gut Microbes ; 16(1): 2410474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39353096

RESUMO

The gut microbiota plays an important role in the development and treatment of hepatocellular carcinoma (HCC). However, the implication of specific gut microbiota in targeted sorafenib therapy for advanced HCC and the microbiota mode of action, remain to be elucidated. Here, we confirmed that four bacterial genera, Lachnoclostridium, Lachnospira, Enterobacter and Enterococcus, are associated with the therapeutic efficacy of Sorafenib, and that Enterobacter faecium (Efm) plays a crucial role in modulating the sorafenib activity. The effective colonization by Emf induced the IL-12 and IFN-γ production and an increased proportion of IFN-γ+CD8+ T cells in the tumor microenvironment. Finally, exopolysaccharides (EPS) from Efm were the primary inducer to prompt IFN-γ+CD8+ T cells to secrete IFN-γ, which together with sorafenib instigated ferroptosis in HCC cells. Collectively, these results indicate that Efm is a promising probiotics that enhances the efficacy of sorafenib treatment in advanced HCC.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Enterococcus faecium , Ferroptose , Interferon gama , Neoplasias Hepáticas , Sorafenibe , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Humanos , Enterococcus faecium/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Animais , Ferroptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Probióticos/farmacologia , Masculino , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
12.
Nat Commun ; 15(1): 8514, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353903

RESUMO

Tumor immune microenvironment (TIME) spatial organization predicts outcome and therapy response in triple-negative breast cancer (TNBC). An immunosuppressive TIME containing elevated tumor-associated macrophages (TAM) and scarce CD8+ T cells is associated with poor outcome, but the regulatory mechanisms are poorly understood. Here we show that ETS1-driven caspase-1 expression, required for IL1ß processing and TAM recruitment, is negatively regulated by estrogen receptors alpha (ERα) and a defining feature of TNBC. Elevated tumoral caspase-1 is associated with a distinct TIME characterized by increased pro-tumoral TAMs and CD8+ T cell exclusion from tumor nests. Mouse models prove the functional importance of ERα, ETS1, caspase-1 and IL1ß in TIME conformation. Caspase-1 inhibition induces an immunoreactive TIME and reverses resistance to immune checkpoint blockade, identifying a therapeutically targetable mechanism that governs TNBC spatial organization.


Assuntos
Linfócitos T CD8-Positivos , Caspase 1 , Receptor alfa de Estrogênio , Imunoterapia , Interleucina-1beta , Proteína Proto-Oncogênica c-ets-1 , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Macrófagos Associados a Tumor , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Humanos , Microambiente Tumoral/imunologia , Camundongos , Imunoterapia/métodos , Caspase 1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Interleucina-1beta/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Regulação Neoplásica da Expressão Gênica
13.
Cancer Immunol Immunother ; 73(12): 237, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358651

RESUMO

Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequently, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), whereas cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating antitumor immune responses in an orthotopic murine lung cancer model.


Assuntos
Antígenos de Neoplasias , Células Dendríticas , Modelos Animais de Doenças , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Animais , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Células Dendríticas/imunologia , Antígenos de Neoplasias/imunologia , Camundongos , Humanos , Camundongos Transgênicos , Feminino , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia
14.
BMC Cancer ; 24(1): 1222, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354417

RESUMO

BACKGROUND: Breast cancer (BC) is the most common cancer in women and poses a significant health burden, especially in China. Despite advances in diagnosis and treatment, patient variability and limited early detection contribute to poor outcomes. This study examines the role of CD8 + T cells in the tumor microenvironment to identify new biomarkers that improve prognosis and guide treatment strategies. METHODS: CD8 + T-cell marker genes were identified using single-cell RNA sequencing (scRNA-seq), and a CD8 + T cell-related gene prognostic signature (CTRGPS) was developed using 10 machine-learning algorithms. The model was validated across seven independent public datasets from the GEO database. Clinical features and previously published signatures were also analyzed for comparison. The clinical applications of CTRGPS in biological function, immune microenvironment, and drug selection were explored, and the role of hub genes in BC progression was further investigated. RESULTS: We identified 71 CD8 + T cell-related genes and developed the CTRGPS, which demonstrated significant prognostic value, with higher risk scores linked to poorer overall survival (OS). The model's accuracy and robustness were confirmed through Kaplan-Meier and ROC curve analyses across multiple datasets. CTRGPS outperformed existing prognostic signatures and served as an independent prognostic factor. The role of the hub gene TTK in promoting malignant proliferation and migration of BC cells was validated. CONCLUSION: The CTRGPS enhances early diagnosis and treatment precision in BC, improving clinical outcomes. TTK, a key gene in the signature, shows promise as a therapeutic target, supporting the CTRGPS's potential clinical utility.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Linfócitos T CD8-Positivos , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Imunoterapia/métodos , Marcadores Genéticos , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos
15.
J Gene Med ; 26(9): e3736, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228151

RESUMO

BACKGROUND: Immunotherapy represents a groundbreaking and monumental achievement in the field of cancer therapy, marking a significant advancement in fighting against this devastating disease. Lung cancer has showed consistent clinical improvements in response to immunotherapy treatments, yet, it is undeniable that challenges such as limited response rates acquire resistance, and the unclear fundamental mechanisms were inevitable problems. METHODS: The cellular composition was defined and distinguished through single-cell RNA sequencing (scRNA-seq) analysis of MPR (major pathologic response) and NMPR (non-major pathologic response) samples in GSE207422, including four primary MPR samples and eight primary NMPR samples. RESULTS: We found obvious difference in CD8+ T cell population between MPR and NMPR samples, with high expression of TYMS, RRM2, and BIRC5 in NPMR samples. Meanwhile, the proportion of macrophages and tumor epithelial cells infiltration increased in the NMPR samples. We discovered biomarkers (ACTN4, ATF3, BRD2, CDKN1A, and CHMP4B) in epithelial cells which were potentially represented worse outcomes. CONCLUSIONS: By exploring the difference of tumor microenvironment (TME) in samples with different corresponding degrees of neoadjuvant immunotherapy, this research introduces a number of novel biomarkers for predicting the response of treatment and a theoretical basis for overcoming immunotherapy resistance.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Imunoterapia/métodos , Análise de Célula Única/métodos , Biomarcadores Tumorais/genética , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Perfilação da Expressão Gênica
16.
Mol Biol Rep ; 51(1): 959, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230620

RESUMO

Cancer remains a global health burden, shaped by both genetic mutations and epigenetic dysregulation. Epigenetic alteration plays a pivotal role in tumorigenesis, immune response modulation, and the emergence of treatment resistance. This review emphasizes the intricate interplay between epigenetically reprogrammed cancer cells and the tumor microenvironment (TME), a relationship central to the immunoediting concept, which encompasses elimination, equilibrium, and escape phases. This review highlights the significance of CD8+ T cells as potent anticancer agents and discusses the mechanisms by which tumor cells evade immune surveillance and evolve resistance to immunotherapy. Such evasion entails the regulation of inhibitory molecules, antigen presentation machinery, and cytokine milieu. Furthermore, this review explores the complex dynamics culminating in CD8+ T cell dysfunction within the TME. In summary, this work offers insights into the indispensable role of epigenetic mechanisms in bolstering cancer cell survival amidst immunological challenges within the TME.


Assuntos
Linfócitos T CD8-Positivos , Epigênese Genética , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias/imunologia , Neoplasias/genética , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Evasão Tumoral/genética , Animais
17.
Sci Immunol ; 9(99): eadi3487, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270006

RESUMO

Immune checkpoint blockade (ICB) enhances T cell responses against cancer, leading to long-term survival in a fraction of patients. CD8+ T cell differentiation in response to chronic antigen stimulation is highly complex, and it remains unclear precisely which T cell differentiation states at which anatomic sites are critical for the response to ICB. We identified an intermediate-exhausted population in the white pulp of the spleen that underwent substantial expansion in response to ICB and gave rise to tumor-infiltrating clonotypes. Increased systemic antigen redirected differentiation of this population toward a more circulatory exhausted KLR state, whereas a lack of cross-presented tumor antigen reduced its differentiation in the spleen. An analogous population of exhausted KLR CD8+ T cells in human blood samples exhibited diminished tumor-trafficking ability. Collectively, our data demonstrate the critical role of antigen density within the spleen for the differentiation and expansion of T cell clonotypes in response to ICB.


Assuntos
Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Baço , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Baço/imunologia , Humanos , Animais , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Masculino , Diferenciação Celular/imunologia , Neoplasias/imunologia
18.
Front Immunol ; 15: 1447555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257577

RESUMO

Introduction: Research has confirmed the safety and comparable seroconversion rates following SARS-CoV-2 vaccination in patients with solid cancers. However, the impact of cancer treatment on vaccine-induced T cell responses remains poorly understood. Methods: In this study, we expand on previous findings within the VOICE trial by evaluating the functional and phenotypic composition of mRNA-1273-induced T cell responses in patients with solid tumors undergoing immunotherapy, chemotherapy, or both, compared to individuals without cancer. We conducted an ELISpot analysis on 386 participants to assess spike-specific T cell responses 28 days after full vaccination. Further in-depth characterization of using flow cytometry was performed on a subset of 63 participants to analyze the functional phenotype and differentiation state of spike-specific T cell responses. Results: ELISpot analysis showed robust induction of spike-specific T cell responses across all treatment groups, with response rates ranging from 75% to 80%. Flow cytometry analysis revealed a distinctive cytokine production pattern across cohorts, with CD4 T cells producing IFNγ, TNF, and IL-2, and CD8 T cells producing IFNγ, TNF, and CCL4. Variations were observed in the proportion of monofunctional CD4 T cells producing TNF, particularly higher in individuals without cancer and patients treated with chemotherapy alone, while those treated with immunotherapy or chemoimmunotherapy predominantly produced IFNγ. Despite these differences, polyfunctional spike-specific memory CD4 and CD8 T cell responses were comparable across cohorts. Notably, immunotherapy-treated patients exhibited an expansion of spike-specific CD4 T cells with a terminally differentiated effector memory phenotype. Discussion: These findings demonstrate that systemic treatment in patients with solid tumors does not compromise the quality of polyfunctional mRNA-1273-induced T cell responses. This underscores the importance of COVID-19 vaccination in patients with solid cancers undergoing systemic treatment.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19 , Células T de Memória , Neoplasias , SARS-CoV-2 , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos/imunologia , Masculino , Feminino , COVID-19/imunologia , COVID-19/prevenção & controle , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/imunologia , SARS-CoV-2/imunologia , Idoso , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Células T de Memória/imunologia , Imunoterapia/métodos , Adulto , Vacinas contra COVID-19/imunologia , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Memória Imunológica
19.
Nat Commun ; 15(1): 7956, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261466

RESUMO

Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.


Assuntos
Linfócitos T CD8-Positivos , Citoesqueleto , Interleucina-2 , Camundongos Endogâmicos C57BL , Fator de Resposta Sérica , Transativadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/metabolismo , Interleucina-2/genética , Animais , Transativadores/metabolismo , Transativadores/genética , Citoesqueleto/metabolismo , Camundongos , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/genética , Listeriose/microbiologia , Actinas/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Camundongos Knockout , Proliferação de Células , Ativação Linfocitária
20.
Cancer Cell ; 42(9): 1491-1493, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255774

RESUMO

Combination immunotherapy improves outcomes in metastatic melanoma, but the underlying mechanisms remain unclear. In this issue of Cancer Cell, Wang et al.1 report dynamics and transcriptional states of CD8+ T cell clones over time in patients treated with anti-PD-1, anti-CTLA-4, or a combination of the two. These findings have important implications for understanding and monitoring combination immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Melanoma , Humanos , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA