Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 12(2): e0006220, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432450

RESUMO

Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase ß participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase ß To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase ß which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase ß were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase ß mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase ß in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control.


Assuntos
DNA Polimerase beta/biossíntese , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia , Northern Blotting , Western Blotting , DNA Polimerase beta/metabolismo , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Peróxidos/toxicidade , Fosforilação , Proteoma/análise , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/efeitos dos fármacos
2.
Oncol Rep ; 34(4): 1667-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238022

RESUMO

Molecular evidence indicates that alterations in genes involved in the maintenance of genome stability may be related to susceptibility to bladder carcinoma. Our goal was to evaluate the prognostic role of base excision repair (BER) genes in a cohort of patients diagnosed with primary urothelial carcinoma of the bladder (UCB). The levels of all APE1, XRCC1 and POLB transcripts were detected by quantitative real-time PCR (qPCR) technique in tumor samples from 52 patients undergoing transurethral resection (TUR) for primary UCB at the Department of Urology, Brazilian National Cancer Institute, Rio de Janeiro. Increased levels of APE1, XRCC1 and POLB transcripts were significantly associated with high-grade tumors when compared to these levels in low-grade tumors (p<0.01) and could be attributed to different mechanisms of transcriptional regulation as a response to tumorigenesis and oxidative stress. By analyzing the collected data in the present study, regardless of pathological grade or stage, univariate analysis revealed that the reduced levels of APE1 transcripts were significantly associated with cancer-specific mortality (p=0.032). Furthermore, the variant genotype (TG/GG) of the APE1 T1349G polymorphism was observed in 75% of a subset of patients who concomitantly experienced reduced levels of the APE1 transcript and death and/or recurrence events. Taken together, our data reinforce the idea that human DNA repair mechanisms must be finely regulated in order to avoid instability leading to tumorigenesis and poor clinical outcomes in UCB patients.


Assuntos
DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Brasil , DNA Polimerase beta/biossíntese , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único , Prognóstico , Análise de Sobrevida , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA