RESUMO
We previously reported that intraerythrocytic malaria parasites have their development synchronized by melatonin and other products of tryptophan catabolism (i.e. serotonin, N-acetylserotonin and tryptamine). Here, we show that N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a product of melatonin degradation, synchronizes Plasmodium chabaudi and Plasmodium falciparum. The synchronization is abrogated with a melatonin receptor antagonist, luzindole. We established quantitatively that a differential AFMK production occurred within the intraerythrocytic stages of rodent malaria parasite Plasmodium chabaudi (ring, trophozoite and schizont), when the infected erythrocytes were previously incubated with melatonin. Measurement of AFMK formation in P. chabaudi after incubation with melatonin at a concentration of 500 nmol/L revealed the following values for AFMK production: ring 0.1 +/- 0.1 nmol/L, trophozoite 22.9 +/- 0.5 nmol/L, schizont 29 +/- 5 nmol/L. Confocal and spectrofluorophotometer experiments with isolated parasites and infected-RBC, loaded with calcium indicator Fluo-4 showed that AFMK elicits an increase in the cytosol calcium concentration in these parasites. Our data suggest that AFMK could have an important role in modulating the cell cycle of malaria parasites mainly in the late stages (trophozoite and schizont).
Assuntos
Ciclo Celular/efeitos dos fármacos , Eritrócitos/metabolismo , Cinuramina/análogos & derivados , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Eritrócitos/parasitologia , Cinuramina/metabolismo , Cinuramina/farmacologia , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Activated phagocytes oxidize the hormone melatonin to N1-acethyl-N2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl. However, AFMK had no effect on the production of HOCl. These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections.
Assuntos
Cinuramina/análogos & derivados , Cinuramina/farmacologia , Melatonina/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Células Cultivadas , Humanos , Ácido Hipocloroso/metabolismo , Cinuramina/química , Cinuramina/metabolismo , Ativação de Neutrófilo/imunologia , Neutrófilos/microbiologia , Neutrófilos/fisiologia , Oxirredução , Fagocitose , Staphylococcus aureus/imunologiaRESUMO
A growing body of evidence suggests that the pineal hormone, melatonin, has immunomodulatory properties, although very little is known about its effect on leukocytes. Therefore, we aimed to investigate the effect of melatonin and its oxidation product N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) on cytokine production by neutrophils and peripheral blood mononuclear cells (PBMCs). AFMK (0.001-1 mM) inhibits the lipopolysaccharide (LPS)-mediated production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) more efficiently in neutrophils than PBMCs. Moreover, the inhibitory activity of AFMK is stronger than that of melatonin. Interestingly, monocytes efficiently oxidize melatonin to AFMK. We conclude that neutrophils are one of the main targets for melatonin and that at least part of the effects described for melatonin on immune cells may be due to its oxidation product, AFMK. We also consider that the oxidation of melatonin may be an important event in the cross-talking between neutrophils and monocytes.