Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.825
Filtrar
1.
Biomaterials ; 313: 122778, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39213978

RESUMO

Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.


Assuntos
Clorofilídeos , Indóis , Platina , Polímeros , Porfirinas , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Terapia por Ultrassom , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Indóis/química , Terapia por Ultrassom/métodos , Porfirinas/química , Porfirinas/farmacologia , Polímeros/química , Animais , Platina/química , Platina/uso terapêutico , Platina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Quinolinas/farmacologia , Quinolinas/química , Camundongos Nus , Portadores de Fármacos/química
2.
Biomaterials ; 313: 122777, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39222545

RESUMO

Telomere length plays a crucial role in cellular aging and the risk of diseases. Unlike normal cells, cancer cells can extend their own survival by maintaining telomere stability through telomere maintenance mechanism. Therefore, regulating the lengths of telomeres have emerged as a promising approach for anti-cancer treatment. In this study, we introduce a nanoscale octopus-like structure designed to induce physical entangling of telomere, thereby efficiently triggering telomere dysfunction. The nanoscale octopus, composed of eight-armed PEG (8-arm-PEG), are functionalized with cell penetrating peptide (TAT) to facilitate nuclear entry and are covalently bound to N-Methyl Mesoporphyrin IX (NMM) to target G-quadruplexes (G4s) present in telomeres. The multi-armed configuration of the nanoscale octopus enables targeted binding to multiple G4s, physically disrupting and entangling numerous telomeres, thereby triggering telomere dysfunction. Both in vitro and in vivo experiments indicate that the nanoscale octopus significantly inhibits cancer cell proliferation, induces apoptosis through telomere entanglement, and ultimately suppresses tumor growth. This research offers a novel perspective for the development of innovative anti-cancer interventions and provides potential therapeutic options for targeting telomeres.


Assuntos
Apoptose , Telômero , Telômero/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Quadruplex G/efeitos dos fármacos , Camundongos Nus , Polietilenoglicóis/química , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Feminino , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Nanoestruturas/química
3.
Biomaterials ; 313: 122792, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226652

RESUMO

The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Animais , Compostos de Boro/química , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Albuminas/química , Albuminas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
4.
Biomaterials ; 313: 122793, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226655

RESUMO

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Assuntos
Ferroptose , Ferro , Ferroptose/efeitos dos fármacos , Animais , Catálise , Humanos , Ferro/química , Linhagem Celular Tumoral , Nanopartículas/química , Porosidade , Camundongos , Cisplatino/química , Cisplatino/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Peróxido de Hidrogênio/química , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Feminino
5.
Biomaterials ; 313: 122814, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39243672

RESUMO

Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.


Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Animais , Raios X , Nanopartículas/química , Feminino , Dióxido de Silício/química , Camundongos , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Células HeLa , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Biomaterials ; 313: 122798, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39244823

RESUMO

Despite the development of antibody-drug conjugates, the fragment Fab-based drug conjugates offer some unique capabilities in terms of safety, clearance, penetration and others. Current methods for preparing Fab drug conjugates are limited by the availability and stability of Fab proteins, leaving reports on this rare. Here, we found that a single-chain scaffold of Fab enables stabilization of the paired structure and supports high-yield expression in bacteria cytoplasm. Furthermore, we conjugated anti-neoplastic agent SN38 to the C-terminus by sortase A ligation and generated a homogenous Fab conjugate with the drug-to-Fab ratio of 1. The resulting anti-HER2 Fab-SN38 conjugate demonstrated potent and antigen-dependent cell-killing ability with the aid of its special cathepsin-triggered cyclization-promoted release mechanism. In vivo, Fab-SN38 can prevent growths of HER2-positive tumors in athymic mice and be well tolerated to the treatment at 7 mg/kg per dose. Anti-tumor activity, high dose tolerance and penetration advantage observed in this study would merit Fab conjugate investigation in target chemotherapy.


Assuntos
Imunoconjugados , Fragmentos Fab das Imunoglobulinas , Camundongos Nus , Receptor ErbB-2 , Animais , Receptor ErbB-2/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Linhagem Celular Tumoral , Feminino , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos
7.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181283

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Assuntos
Diferenciação Celular , Medicamentos de Ervas Chinesas , Endometriose , Endométrio , Fibrose , Células-Tronco Mesenquimais , Camundongos Nus , Comunicação Parácrina , Endometriose/tratamento farmacológico , Endometriose/patologia , Endometriose/metabolismo , Feminino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Camundongos , Células Cultivadas , Adulto , Modelos Animais de Doenças
8.
J Ethnopharmacol ; 336: 118754, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tubeimoside-I (TBM) promotes various cancer cell death by increasing the reactive oxygen species (ROS) production. However, the specific molecular mechanisms of TBM and its impact on oxaliplatin-mediated anti-CRC activity are not yet fully understood. AIM OF THE STUDY: To elucidate the therapeutic effect and underlying molecular mechanism of TBM on oxaliplatin-mediated anti-CRC activity. MATERIALS AND METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing assays and flow cytometry were conducted to investigate the changes in cell phenotypes and ROS generation. Real-time quantitative PCR (qRT-PCR) and western blotting were performed to detect the expressions of related mRNA and proteins. Finally, mouse xenograft models demonstrated that synergistic anti-tumor effects of combined treatment with TBM and oxaliplatin. RESULTS: The synergistic enhancement of the anti-tumor effects of oxaliplatin in colon cancer cells by TBM involved in the regulation of ROS-mediated endoplasmic reticulum (ER) stress, C-jun-amino-terminal kinase (JNK), and p38 MAPK signaling pathways. Mechanistically, TBM increased ROS generation in colon cancer cells by inhibiting heat shock protein 60 (HSPD1) expression. Knocking down HSPD1 increased TBM-induced antitumor activity and ROS generation in colon cancer cells. The mouse xenograft tumor models further validated that the combination therapy exhibited stronger anti-tumor effects than monotherapy alone. CONCLUSIONS: Combined therapy with TBM and oxaliplatin might be an effective therapeutic strategy for some CRC patients.


Assuntos
Neoplasias Colorretais , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático , Oxaliplatina , Espécies Reativas de Oxigênio , Saponinas , Triterpenos , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biomaterials ; 312: 122743, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39111233

RESUMO

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Camundongos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Transferência de Energia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Camundongos Endogâmicos BALB C , Luz , Camundongos Nus , Óxido Nítrico/metabolismo
10.
Biomaterials ; 312: 122733, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106819

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Resistencia a Medicamentos Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
11.
Cell Death Dis ; 15(10): 725, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358349

RESUMO

Pancreatic cancer is one of the leading causes of cancer-associated mortality, with a poor treatment approach. Previous study has shown that inducing pyroptosis in pancreatic ductal adenocarcinoma (PDAC) slows the growth of PDACs, implying that pyroptosis inducers are potentially effective for PDAC therapy. Here, we found that Dronedarone hydrochloride (DH), an antiarrhythmic drug, induces pyroptosis in pancreatic cancer cells and inhibits PDAC development in mice. In PANC-1 cells, DH caused cell death in a dosage- and time-dependent manner, with only pyroptosis inhibitors and GSDMD silencing rescuing the cell death, indicating that DH triggered GSDMD-dependent pyroptosis. Further work revealed that DH increased mitochondrial stresses and caused mitochondrial DNA (mtDNA) leakage, activating the cytosolic STING-cGAS and pyroptosis pathways. Finally, we assessed the anti-cancer effects of DH in a pancreatic cancer mouse model and found that DH treatment suppressed pancreatic tumor development in vivo. Collectively, our investigation demonstrates that DH triggers pyroptosis in PDAC and proposes its potential effects on anti-PDAC growth.


Assuntos
DNA Mitocondrial , Dronedarona , Neoplasias Pancreáticas , Piroptose , Piroptose/efeitos dos fármacos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Humanos , Dronedarona/farmacologia , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Camundongos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Camundongos Nus
12.
Clin Transl Med ; 14(10): e70037, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358921

RESUMO

BACKGROUND: The transcription factor NRF2 plays a significant role in regulating genes that protect cells from oxidative damage. O-GlcNAc modification, a type of posttranslational modification, is crucial for cellular response to stress. Although the involvement of both NRF2 and O-GlcNAc in maintaining cellular redox balance and promoting cancer malignancy has been demonstrated, the potential mechanisms remain elusive. METHODS: The immunoblotting, luciferase reporter, ROS assay, co-immunoprecipitation, and immunofluorescence was used to detect the effects of global cellular O-GlcNAcylation on NRF2. Mass spectrometry was utilised to map the O-GlcNAcylation sites on NRF2, which was validated by site-specific mutagenesis and O-GlcNAc enzymatic labelling. Human lung cancer samples were employed to verify the association between O-GlcNAc and NRF2. Subsequently, the impact of NRF2 O-GlcNAcylation in lung cancer malignancy and cisplatin resistance were evaluated in vitro and in vivo. RESULTS: NRF2 is O-GlcNAcylated at Ser103 residue, which hinders its binding to KEAP1 and thus enhances its stability, nuclear localisation, and transcription activity. Oxidative stress and cisplatin can elevate the phosphorylation of OGT at Thr444 through the activation of AMPK kinase, leading to enhanced binding of OGT to NRF2 and subsequent elevation of NRF2 O-GlcNAcylation. Both in cellular and xenograft mouse models, O-GlcNAcylation of NRF2 at Ser103 promotes the malignancy of lung cancer. In human lung cancer tissue samples, there was a significant increase in global O-GlcNAcylation, and elevated levels of NRF2 and its O-GlcNAcylation compared to paired adjacent normal tissues. Chemotherapy promotes NRF2 O-GlcNAcylation, which in turn decreases cellular ROS levels and drives lung cancer cell survival. CONCLUSION: Our findings indicate that OGT O-GlcNAcylates NRF2 at Ser103, and this modification plays a role in cellular antioxidant, lung cancer malignancy, and cisplatin resistance.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos Nus
13.
J Transl Med ; 22(1): 875, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350174

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS: The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS: High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS: NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.


Assuntos
Proliferação de Células , Quimiocina CCL2 , Colangiocarcinoma , Macrófagos , Quimiocina CCL2/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Macrófagos/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Masculino , Microambiente Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Polaridade Celular/efeitos dos fármacos , Camundongos Nus , Camundongos , Pessoa de Meia-Idade , Ligação Proteica
14.
J Exp Clin Cancer Res ; 43(1): 274, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350250

RESUMO

BACKGROUND: Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored. METHODS: The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets. RESULTS: Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression. CONCLUSIONS: The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.


Assuntos
Neoplasias Colorretais , Progressão da Doença , RNA Longo não Codificante , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Feminino , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Masculino , Regulação Neoplásica da Expressão Gênica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos Nus
15.
J Cell Mol Med ; 28(19): e70080, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351597

RESUMO

New biomarkers for early diagnosis of gastric cancer (GC), the second leading cause of cancer-related death, are urgently needed. IGFBP7, known to play various roles in multiple tumours, is complexly regulated across diverse cancer types, as evidenced by our pancancer analysis. Bioinformatics analysis revealed that IGFBP7 expression was related to patient prognosis, tumour clinicopathological characteristics, tumour stemness, microsatellite instability and immune cell infiltration, as well as the expression of oncogenes and immune checkpoints. GSEA links IGFBP7 to several cancer-related pathways. IGFBP7 deficiency inhibited GC cell proliferation and migration in vitro. Furthermore, an in vivo nude mouse model revealed that IGFBP7 downregulation suppressed the tumorigenesis of GC cells. Western blotting analysis showed that the JAK1/2-specific inhibitor ruxolitinib could rescue alterations induced by IGFBP7 overexpression in GC cells. Additionally, our bioinformatics analysis and in vitro assays suggested that IGFBP7 is regulated by DNA methylation at the genetic level and that the RNA m6A demethylase FTO modulates it at the posttranscriptional level. This study emphasizes the clinical relevance of IGFBP7 in GC and its influence on cell proliferation and migration via the JAK/STAT signalling pathway. This study also highlights the regulation of IGFBP7 in GC by DNA and m6A RNA methylation.


Assuntos
Movimento Celular , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fatores de Transcrição STAT , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Movimento Celular/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Animais , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição STAT/metabolismo , Camundongos Nus , Janus Quinases/metabolismo , Feminino , Masculino , Metilação de RNA
16.
J Cell Mol Med ; 28(19): e70122, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351642

RESUMO

Human papillomavirus (HPV) infection can cause condyloma acuminatum (CA), which is characterized by a high incidence and a propensity for recurrence after treatment. Angiogenesis plays an important role in the occurrence and development of CA. Seryl-tRNA synthetase (SerRS) is a newly identified, potent anti-angiogenic factor that directly binds to the vascular endothelial growth factor (VEGFA) promoter, thereby suppressing its transcription. Emodin is a natural anthraquinone derivative that can promote SerRS expression. This study aimed to investigate the effects of emodin on CA and explore combined treatment strategies. The HPV-infected cell line SiHa was treated with either DMSO, emodin, ALA-PDT or a combination of emodin and ALA-PDT. We observed the effects on cell proliferation, apoptosis and the SerRS-VEGFA pathway. Our findings demonstrated that emodin targets angiogenesis through the SerRS-VEGFA pathway, resulting in the inhibition of SiHa cell proliferation and promotion of apoptosis (p < 0.001). To verify the therapeutic effect of emodin combined with ALA-PDT on HPV-associated tumours in vivo, we established an animal xenograft model by subcutaneously inoculating mice with SiHa cells (n = 4). The results showed that the combination of emodin and ALA-PDT significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.001), thus showing an inhibitory effect on tumour (p < 0.001). Furthermore, we determined that the mechanism underlying the decrease in VEGFA expression after emodin combined with ALA-PDT in CA may be attributed to the promotion of SerRS expression (p < 0.001). The combination of emodin and ALA-PDT holds promise as a novel therapeutic target for CA by targeting neovascularization in condyloma tissues.


Assuntos
Ácido Aminolevulínico , Apoptose , Proliferação de Células , Condiloma Acuminado , Emodina , Neovascularização Patológica , Fotoquimioterapia , Fator A de Crescimento do Endotélio Vascular , Emodina/farmacologia , Emodina/uso terapêutico , Humanos , Animais , Condiloma Acuminado/tratamento farmacológico , Condiloma Acuminado/virologia , Condiloma Acuminado/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fotoquimioterapia/métodos , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Angiogênese
17.
Life Sci Alliance ; 7(12)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39353739

RESUMO

Despite initial high response rates to first-line EGFR TKI, all non-small-cell lung cancer (NSCLC) with EGFR-activating mutation will ultimately develop resistance to treatment. Identification of resistance mechanisms is critical to adapt treatment and improve patient outcomes. Here, we show that a PPP3CB transcript that encodes full-length catalytic subunit 2B of calcineurin accumulates in EGFR-mutant NSCLC cells with acquired resistance against different EGFR TKIs and in post-progression biopsies of NSCLC patients treated with EGFR TKIs. Neutralization of PPP3CB by siRNA or inactivation of calcineurin by cyclosporin A induces apoptosis in resistant cells treated with EGFR TKIs. Mechanistically, EGFR TKIs increase the cytosolic level of calcium and trigger activation of a calcineurin/MEK/ERK pathway that prevents apoptosis. Combining EGFR, calcineurin, and MEK inhibitors overcomes resistance to EGFR TKI in both in vitro and in vivo models. Our results identify PPP3CB overexpression as a new mechanism of acquired resistance to EGFR TKIs, and provide a promising therapeutic approach for NSCLC patients that progress under TKI treatment.


Assuntos
Calcineurina , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases , Humanos , Calcineurina/metabolismo , Calcineurina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Mutação , Feminino
18.
Cell Death Dis ; 15(10): 722, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353894

RESUMO

CD2-associated protein (CD2AP) is a scaffolding/adaptive protein that regulates intercellular adhesion and multiple signaling pathways. Although emerging evidence suggests that CD2AP is associated with several malignant tumors, there is no study investigating the expression and biological significance of CD2AP in glioblastoma multiforme (GBM). Here by studying public datasets, we found that CD2AP expression was significantly elevated in GBM and that glioma patients with increased CD2AP expression had a worse prognosis. We also confirmed the increase of CD2AP expression in clinical GBM samples and GBM cell lines. CD2AP overexpression in GBM cells promoted their proliferation, colony formation, migration, and invasion in vitro and their tumorigenesis in vivo, and reduced cell apoptosis both at basal levels and in response to temozolomide. While CD2AP knockdown had the opposite effects. Mechanistically, we revealed that CD2AP interacted with TRIM5, an NF-κB modulator. CD2AP overexpression and knockdown increased and decreased TRIM5 levels as well as the NF-κB activity, respectively. Moreover, downregulation of TRIM5 reversed elevated NF-κB activity in GBM cells with CD2AP overexpression; and inhibition of the NF-κB activity attenuated malignant features of GBM cells with CD2AP overexpression. Our findings demonstrate that CD2AP promotes GBM progression through activating TRIM5-mediated NF-κB signaling and that downregulation of CD2AP can attenuate GBM malignancy, suggesting that CD2AP may become a biomarker and the CD2AP-TRIM5-NF-κB axis may become a therapeutic target for GBM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Glioblastoma , NF-kappa B , Transdução de Sinais , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , NF-kappa B/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Progressão da Doença , Proliferação de Células , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Camundongos , Camundongos Nus , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Apoptose , Masculino , Feminino , Proteínas do Citoesqueleto
19.
Cell Death Dis ; 15(10): 715, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353900

RESUMO

The metastasis of hepatocellular carcinoma (HCC) poses a significant threat to the survival of patients. G protein-coupled receptor 56 (GPR56) has garnered extensive attention within malignant tumor research and plays a crucial role in cellular surface signal transmission. Nonetheless, its precise function in HCC remains ambiguous. Our investigation reveals a notable rise in GPR56 expression levels in human HCC cases, with heightened GPR56 levels correlating with unfavorable prognoses. GPR56 regulates TGF-ß pathway by interacting with TGFBR1, thereby promoting HCC metastasis. At the same time, GPR56 is subject to regulation by the canonical cascade of TGF-ß signaling, thereby establishing a positive feedback loop. Furthermore, the combination application of TGFBR1 inhibitor galunisertib (GAL) and GPR56 inhibitor Dihydromunduletone (DHM), significantly inhibits HCC metastasis. Interventions towards this signaling pathway could offer a promising therapeutic approach to effectively impede the metastasis of GPR56-mediated HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástase Neoplásica , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Quinolinas/farmacologia , Regulação Neoplásica da Expressão Gênica , Masculino , Pirazóis
20.
Cell Death Dis ; 15(10): 713, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353898

RESUMO

Compelling evidence has revealed a novel function of the STAT pathway in the pathophysiology of uveal melanoma (UM); however, its regulatory mechanisms remain unclear. Here, we analyzed the clinical prognostic value of STAT family genes in UM patients using bioinformatics approaches and found that high STAT6 expression is associated with poor prognosis. Furthermore, cellular experiments and a nude mouse model demonstrated that STAT6 promotes UM progression through the autophagy pathway both in vivo and in vitro. Next, RIP-PCR revealed that STAT6 protein binds to LINC01637 mRNA, which in turn regulates STAT6 expression to promote UM growth. Finally, molecular docking indicated that STAT6 is a target of Zoledronic Acid, which can delay UM tumorigenicity by inhibiting STAT6 expression. Taken together, our results indicate that the STAT6/LINC01637 axis promotes UM progression via autophagy and may serve as a potential therapeutic target for UM.


Assuntos
Autofagia , Proliferação de Células , Melanoma , Camundongos Nus , Fator de Transcrição STAT6 , Neoplasias Uveais , Autofagia/efeitos dos fármacos , Humanos , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Melanoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Camundongos , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Regulação Neoplásica da Expressão Gênica , Ácido Zoledrônico/farmacologia , Masculino , Feminino , Camundongos Endogâmicos BALB C , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA