Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.392
Filtrar
1.
J Cell Mol Med ; 28(19): e70122, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351642

RESUMO

Human papillomavirus (HPV) infection can cause condyloma acuminatum (CA), which is characterized by a high incidence and a propensity for recurrence after treatment. Angiogenesis plays an important role in the occurrence and development of CA. Seryl-tRNA synthetase (SerRS) is a newly identified, potent anti-angiogenic factor that directly binds to the vascular endothelial growth factor (VEGFA) promoter, thereby suppressing its transcription. Emodin is a natural anthraquinone derivative that can promote SerRS expression. This study aimed to investigate the effects of emodin on CA and explore combined treatment strategies. The HPV-infected cell line SiHa was treated with either DMSO, emodin, ALA-PDT or a combination of emodin and ALA-PDT. We observed the effects on cell proliferation, apoptosis and the SerRS-VEGFA pathway. Our findings demonstrated that emodin targets angiogenesis through the SerRS-VEGFA pathway, resulting in the inhibition of SiHa cell proliferation and promotion of apoptosis (p < 0.001). To verify the therapeutic effect of emodin combined with ALA-PDT on HPV-associated tumours in vivo, we established an animal xenograft model by subcutaneously inoculating mice with SiHa cells (n = 4). The results showed that the combination of emodin and ALA-PDT significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.001), thus showing an inhibitory effect on tumour (p < 0.001). Furthermore, we determined that the mechanism underlying the decrease in VEGFA expression after emodin combined with ALA-PDT in CA may be attributed to the promotion of SerRS expression (p < 0.001). The combination of emodin and ALA-PDT holds promise as a novel therapeutic target for CA by targeting neovascularization in condyloma tissues.


Assuntos
Ácido Aminolevulínico , Apoptose , Proliferação de Células , Condiloma Acuminado , Emodina , Neovascularização Patológica , Fotoquimioterapia , Fator A de Crescimento do Endotélio Vascular , Emodina/farmacologia , Emodina/uso terapêutico , Humanos , Animais , Condiloma Acuminado/tratamento farmacológico , Condiloma Acuminado/virologia , Condiloma Acuminado/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fotoquimioterapia/métodos , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Angiogênese
2.
Sci Rep ; 14(1): 22147, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333763

RESUMO

Heme serves as a prosthetic group in hemoproteins, including subunits of the mammalian mitochondrial electron transfer chain. The first enzyme in vertebrate heme biosynthesis, 5-aminolevulinic acid synthase 1 (ALAS1), is ubiquitously expressed and essential for producing 5-aminolevulinic acid (ALA). We previously showed that Alas1 heterozygous mice at 20-35 weeks (aged-A1+/-s) manifested impaired glucose metabolism, mitochondrial malformation in skeletal muscle, and reduced exercise tolerance, potentially linked to autophagy dysfunction. In this study, we investigated autophagy in A1+/-s and a sarcopenic phenotype in A1+/-s at 75-95 weeks (senile-A1+/-s). Senile-A1+/-s exhibited significantly reduced body and gastrocnemius muscle weight, and muscle strength, indicating an accelerated sarcopenic phenotype. Decreases in total LC3 and LC3-II protein and Map1lc3a mRNA levels were observed in aged-A1+/-s under fasting conditions and in Alas1 knockdown myocyte-differentiated C2C12 cells (A1KD-C2C12s) cultured in high- or low-glucose medium. ALA treatment largely reversed these declines. Reduced AMP-activated protein kinase (AMPK) signaling was associated with decreased autophagy in aged-A1+/-s and A1KD-C2C12s. AMPK modulation using AICAR (activator) and dorsomorphin (inhibitor) affected LC3 protein levels in an AMPK-dependent manner. Our findings suggest that heme deficiency contributes to accelerated sarcopenia-like defects and reduced autophagy in skeletal muscle, primarily due to decreased AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Heme , Músculo Esquelético , Sarcopenia , Transdução de Sinais , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Heme/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/genética , 5-Aminolevulinato Sintetase/metabolismo , 5-Aminolevulinato Sintetase/genética , Masculino , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Linhagem Celular , Glucose/metabolismo , Ribonucleotídeos/farmacologia , Ácido Aminolevulínico/farmacologia
3.
Asian Pac J Cancer Prev ; 25(9): 3111-3118, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39342590

RESUMO

OBJECTIVE: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. METHODS: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou-Talalay analysis. RESULTS: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 6172.8 photons/gm (ph/gm) of PDT focused on cancer cells. CONCLUSION: integration of the attenuated NDV-AMHA1 strain with photodynamic therapy has a synergistic killing effect on breast cancer cells in vitro, suggesting that this strategy could have clinical application to overcome breast cancer.


Assuntos
Neoplasias da Mama , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Feminino , Terapia Viral Oncolítica/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Vírus Oncolíticos , Células Tumorais Cultivadas , Ácido Aminolevulínico/uso terapêutico , Ácido Aminolevulínico/farmacologia , Terapia Combinada
4.
Int J Biol Sci ; 20(11): 4238-4257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247827

RESUMO

Squamous Cell Carcinoma (SCC) is a subtype of Non-Melanoma Skin Cancer, the most common group of malignancies worldwide. Photodynamic therapy (PDT) is a non-invasive treatment approved for specific subtypes of SCC. Some malignancies resist PDT, forming more aggressive tumors and multiple relapses. Thus, new approaches aimed at optimizing the response to PDT are needed. The mTORC1 inhibitor rapamycin, also known as Sirolimus (SRL), interferes with protein synthesis and cell metabolism. The use of SRL as an immunosuppressant is associated to lower rates of SCC in kidney-transplanted patients, which are frequently affected by this pathology. We have evaluated SRL pre-treatment efficacy to enhance the damage induced by PDT with Methyl 5-aminolevulinate in two different cutaneous SCC established cell lines (SCC13 and A431) in vitro and therapy sensitization in PDT-resistant cell lines. We tested for the first time the SRL + PDT combination in a SKH-1 mouse model of photocarcinogenesis, diminishing the frequency of lesions and restraining tumor growth. Molecular studies revealed that protoporphyrin IX and reactive oxygen species production induced by PDT were promoted by SRL pre-treatment. Lastly, SRL modifies the expression and intracellular location of NRF2, interfering with the downstream antioxidant response modulated by NQO1 and HO-1. In conclusion, we propose SRL as a potential adjuvant to enhance PDT efficacy for SCC treatment.


Assuntos
Carcinoma de Células Escamosas , Fator 2 Relacionado a NF-E2 , Fotoquimioterapia , Transdução de Sinais , Sirolimo , Neoplasias Cutâneas , Fator 2 Relacionado a NF-E2/metabolismo , Fotoquimioterapia/métodos , Animais , Camundongos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ácido Aminolevulínico/uso terapêutico , Ácido Aminolevulínico/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Feminino
5.
J Photochem Photobiol B ; 258: 112999, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126752

RESUMO

5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.


Assuntos
Ácido Aminolevulínico , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Fotoquimioterapia , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Animais , Ouro/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Linhagem Celular Tumoral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201369

RESUMO

Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.


Assuntos
Catequina , Proliferação de Células , Heme , Fármacos Fotossensibilizantes , Protoporfirinas , Espécies Reativas de Oxigênio , Catequina/análogos & derivados , Catequina/farmacologia , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo , Humanos , Heme/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fotoquimioterapia/métodos , Sobrevivência Celular/efeitos dos fármacos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/análogos & derivados
7.
Int Immunopharmacol ; 140: 112795, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39096873

RESUMO

Acne is a chronic inflammatory skin disease with wide-ranging effects, involving factors such as Propionibacterium acnes (P. acnes) infection and sebum hypersecretion. Current acne treatments are challenged by drug resistance. 5-aminolaevulinic acid (ALA) -based photodynamic therapy (PDT) has been widely used in the clinical treatment of acne, however, the mechanism of its action remains to be elucidated. In this study, by constructing a mice ears model of P. acnes infection, we found that ALA-PDT inhibited the proliferation of P. acnes in vivo and in vitro, significantly ameliorated ear swelling, and blocked the chronic inflammatory process. In vitro, ALA-PDT inhibited lipid secretion and regulated the expression of lipid synthesis and metabolism-related genes in SZ95 cells. Further, we found that ALA-PDT led to DNA damage and apoptosis in SZ95 cells by inducing mitochondrial stress and oxidative stress. Altogether, our study demonstrated the great advantages of ALA-PDT for the treatment of acne and revealed that the mechanism may be related to the blockade of chronic inflammation and the suppression of lipid secretion by ALA-PDT.


Assuntos
Acne Vulgar , Ácido Aminolevulínico , Mitocôndrias , Estresse Oxidativo , Fotoquimioterapia , Propionibacterium acnes , Animais , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Acne Vulgar/tratamento farmacológico , Fotoquimioterapia/métodos , Estresse Oxidativo/efeitos dos fármacos , Propionibacterium acnes/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/patologia , Glândulas Sebáceas/metabolismo , Humanos , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Orelha/patologia
8.
Redox Biol ; 75: 103247, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39047636

RESUMO

Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.


Assuntos
Replicação do DNA , Heme Oxigenase-1 , Animais , Humanos , Camundongos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Dano ao DNA , Quadruplex G , Células HEK293 , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Camundongos Knockout , Estresse Oxidativo
9.
J Biophotonics ; 17(9): e202400176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39023037

RESUMO

Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancers, known for its aggressiveness and poor prognosis. Photodynamic therapy (PDT) has emerged as a promising adjuvant therapy and is linked to immunogenic cell death, activating innate and adaptive anti-tumor responses. Natural Killer (NK) cells, key players in malignant cell elimination, have not been extensively studied in PDT. This study evaluates whether PDT increases OSCC cell lines' susceptibility to NK cell cytotoxicity. PDT, using 5-aminolevulinic acid (5-ALA) and LED irradiation, was applied to Ca1 and Luc4 cell lines. Results showed a dose-dependent viability decrease post-PDT. Gene expression analysis revealed upregulation of NK cell-activating ligands (ULBP1-4, MICA/B) and decreased MHC class I expression in Ca1, suggesting increased NK cell susceptibility. Enhanced NK cell cytotoxicity was confirmed in Ca1 but not in Luc4 cells. These findings indicate that PDT may enhance NK cell-mediated cytotoxicity in OSCC, offering potential for improved treatment strategies.


Assuntos
Ácido Aminolevulínico , Carcinoma de Células Escamosas , Células Matadoras Naturais , Neoplasias Bucais , Fotoquimioterapia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/imunologia , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Ácido Aminolevulínico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Citotoxicidade Imunológica/efeitos dos fármacos
10.
Fish Shellfish Immunol ; 151: 109746, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964435

RESUMO

5-aminolevulinic acid (5-ALA) is an endogenous non-protein amino acid that is frequently used in modern agriculture. This study set out to determine how dietary 5-ALA affected the nonspecific immunity and growth performance of Litopenaeus vannamei. The shrimp were supplemented with dietary 5-ALA at 0, 15, 30, 45, and 60 mg/kg for three months. Transcriptome data of the control group and the group supplemented with 45 mg/kg dietary 5-ALA were obtained using transcriptome sequencing. 592 DEGs were identified, of which 426 were up-regulated and 166 were down-regulated. The pathways and genes associated with growth performance and nonspecific immunity were confirmed using qRT-PCR. The highest survival rate, body length growth rate, and weight gain values were observed in shrimp fed diets containing 45 mg/kg 5-ALA. L. vannamei in this group had a significantly higher total hemocyte count, phagocytosis rate and respiratory burst value than those in the control group. High doses of dietary 5-ALA (45 mg/kg, 60 mg/kg) significantly increased the activities of catalase, superoxide dismutase, oxidized glutathione, glutathione-peroxidase, phenoloxidase, lysozyme, acid phosphatase, and alkaline phosphatase. At the transcriptional level, dietary 5-ALA significantly up-regulated the expression levels of antioxidant immune-related genes. The optimal concentration of 5-ALA supplementation was 39.43 mg/kg, as indicated by a broken line regression. Our study suggested that dietary 5-ALA positively impacts the growth and nonspecific immunity of L. vannamei, providing a novel theoretical basis for further research into 5-ALA as a dietary supplement.


Assuntos
Ácido Aminolevulínico , Ração Animal , Dieta , Suplementos Nutricionais , Perfilação da Expressão Gênica , Imunidade Inata , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/genética , Ácido Aminolevulínico/administração & dosagem , Ácido Aminolevulínico/farmacologia , Ração Animal/análise , Suplementos Nutricionais/análise , Dieta/veterinária , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Transcriptoma , Distribuição Aleatória , Relação Dose-Resposta a Droga
11.
Biomed Pharmacother ; 178: 117132, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047418

RESUMO

Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 µM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.


Assuntos
Ácido Aminolevulínico , Diabetes Mellitus Experimental , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Ratos Sprague-Dawley , Cicatrização , Infecção dos Ferimentos , Animais , Ácido Aminolevulínico/farmacologia , Fotoquimioterapia/métodos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ratos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Doença Crônica , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
12.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044341

RESUMO

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Assuntos
Ácido Aminolevulínico , Dano ao DNA , Reparo do DNA , Fibroblastos , Fotoquimioterapia , Transdução de Sinais , Envelhecimento da Pele , Raios Ultravioleta , Ácido Aminolevulínico/farmacologia , Reparo do DNA/efeitos dos fármacos , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Fotoquimioterapia/métodos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Masculino , Fármacos Fotossensibilizantes/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
13.
Photodiagnosis Photodyn Ther ; 48: 104238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848883

RESUMO

BACKGROUND: Acne vulgaris is a species-specific human disease. To date, there has been no established human sebocyte cell line of Asian origin. Our previous study has demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of acne vulgaris, primarily attributed to its cytotoxic properties; however, its regulatory mechanism remains largely unknown. OBJECTIVES: To establish an immortalized human sebocyte cell line derived from Chinese population and investigate the underlying mechanism of ALA-PDT. METHODS: Human primary sebocytes were transfected with the human tert gene (h­tert). The biological characteristics, including cell proliferation, cell markers, and sebum secretion function, were compared between primary sebocytes and the immortalized sebocytes (XL-i-20). Stimulations such as ALA-PDT, were applied respectively to both primary sebocytes and XL-i-20 cells to assess changes in their cellular functions. The transcriptome differences between primary sebocytes and XL-i-20 sebocytes were investigated using RNA-seq analysis. The XL-i-20 cell line was used to establish a sebaceous gland (SG) organoid culture, serving as a representative model of SG for the investigation of ALA-PDT. RESULTS: The h­tert immortalized sebocyte cell line exhibited the ability to be consecutively cultured for more than fifty passages. Both primary and immortalized cells expressed sebocyte markers such as epithelial membrane antigens (EMA, or MUC-1), Cytokeratin 7 (CK7) and adipose differentiation-related protein associated antigens (ADRP), and maintained sebum secretion function. The proliferative capacity of XL-i-20 was found to be significantly higher than that of primary sebocytes. The responses of XL-i-20 to ALA-PDT were indistinguishable from those elicited by primary sebocytes. Cell viability and sebum secretion were decreased after ALA-PDT in both two cell lines, and lipid-related proteins (SREBP-1/PPARγ) were down-regulated. The transcriptome data consistently demonstrated upregulation of genes related to inflammatory responses and downregulation of genes involved in lipid metabolism in both cell types following PDT. The analysis of common differential genes of primary sebocytes and XL-i-20 sebocytes post ALA-PDT showed that TNF signaling pathways, MAPK signaling pathways and JAK-STAT signaling pathways were activated. The SG organoids were spherical, which expressed markers of FANS and PLET1. Ki-67 was down-regulated after ALA-PDT. CONCLUSIONS: We have developed an h­tert immortalized sebocyte cell line from an Asian population. The cell line, XL-i-20, maintains the essential characteristics of its parent primary sebocytes. Moreover, XL-i-20 sebocyte exhibited a significant respond to ALA-PDT, demonstrating comparable phenotypic and molecular changes to primary sebocytes. Therefore, XL-i-20 and its derived SG organoid serve as appropriate in vitro models for investigating the efficacy and mechanisms of ALA-PDT in SG-related diseases.


Assuntos
Ácido Aminolevulínico , Proliferação de Células , Fotoquimioterapia , Fármacos Fotossensibilizantes , Glândulas Sebáceas , Humanos , Fotoquimioterapia/métodos , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/citologia , Ácido Aminolevulínico/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Telomerase , Acne Vulgar/tratamento farmacológico , Sebo/metabolismo
14.
Photodiagnosis Photodyn Ther ; 48: 104253, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901716

RESUMO

BACKGROUND: Photodynamic therapy (PDT) has been utilized as a promising alternative cancer treatment due to its minimum invasiveness over the years. Exogenous 5-aminolevulinic acid (ALA) triggers protoporphyrin IX (PpIX) accumulation, which happens in cancer cells. However, certain types of cancer exhibit reduced effectiveness in the PpIX accumulation mechanism. This study aimed to determine the effect of ALA-PDT combination with hemin on gastric carcinoma TMK-1 cells. METHODS: This study utilized TMK-1 gastric cancer cell line to evaluate PpIX, ROS, and Fe2+ accumulation following the administration of ALA, hemin, and a combination of ALA and hemin PDT. We also evaluate the mRNA expressions related to iron homeostasis and treatment impacts on cell viability. RESULTS: The co-addition of ALA and hemin PDT for 4 h of treatment resulted in a significant decrease in cell viability by up to 18 %. While ALA-PDT enhanced PpIX metabolism, the addition of hemin influenced both the production of reactive oxygen species (ROS) and cellular iron homeostasis by inducing Fe2+ accumulation and affecting mRNA levels of IRP, Tfr1, Ferritin, NFS1, and SDHB. CONCLUSION: These findings suggest that the addition of ALA and hemin enhances phototoxicity in TMK-1 cells. The combination of ALA and hemin with PDT induces cell death, evidenced by increased cytotoxicity properties such as PpIX and ROS, along with significant changes in TMK-1 gastric cancer iron homeostasis. Therefore, the combination of ALA and hemin could be one of the alternatives in photodynamic therapy for cancer in the future.


Assuntos
Ácido Aminolevulínico , Sobrevivência Celular , Hemina , Homeostase , Ferro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Protoporfirinas , Espécies Reativas de Oxigênio , Ácido Aminolevulínico/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Hemina/farmacologia , Ferro/metabolismo , Linhagem Celular Tumoral , Protoporfirinas/farmacologia , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
15.
Asian Pac J Cancer Prev ; 25(6): 2051-2058, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918667

RESUMO

OBJECTIVE: Breast cancer is one of the most widespread tumors among women worldwide, which is difficult to treat due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment. This method relies on light-activated photosensitizers that, upon absorbing light, generate reactive oxygen species (ROS) with powerful cell-killing outcomes. Nuclear factor kappa B (NF-κB), a transcription factor, plays a key role in cancer development by regulating cell proliferation, differentiation, and survival. Inhibiting NF-κB can sensitize tumor cells to chemotherapeutic agents. Dimethyl fumarate (DMF), an NF-κB inhibitor approved by the FDA for multiple sclerosis treatment, has further shown promise in suppressing breast cancer cell growth in vitro. We hypothesized that combining PDT with Dimethyl fumarate (DMF) could further enhance therapeutic efficacy for both treatment modalities. METHODS: In the current study, we explored the PDT effect of 1 and 2 mM aminolaevulinic acid (ALA) and low-power He-Ne laser irradiation combined with different concentrations of DMF (2.5, 1.25, or 0.652 µg/ml) against hormone nonresponsive AMJ13 breast cancer cell line that is derived from Iraqi patient. RESULTS: Our results demonstrated that co-administration with all tested DMF concentrations significantly enhanced the cytotoxicity of PDT antitumor effect. The combination index analysis showed presence of synergism in combining PDT with DMF. CONCLUSION: This finding suggests that the combination of PDT with DMF could be a promising novel strategy against triple negative breast cancer that could be applied clinically due to the fact that both of these treatments are already clinically approved therapies.


Assuntos
Ácido Aminolevulínico , Neoplasias da Mama , Proliferação de Células , Fumarato de Dimetilo , NF-kappa B , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , NF-kappa B/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/farmacologia , Feminino , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fumarato de Dimetilo/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Linhagem Celular Tumoral
16.
Mol Pharm ; 21(7): 3218-3232, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885477

RESUMO

Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.


Assuntos
Carcinoma de Células Escamosas , Membrana Celular , Nanopartículas , Radiossensibilizantes , Neoplasias Cutâneas , Animais , Camundongos , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Radiossensibilizantes/administração & dosagem , Membrana Celular/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/administração & dosagem , Lipídeos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Desferroxamina/química , Desferroxamina/farmacologia , Camundongos Nus , Feminino , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Lipossomos
17.
Biosens Bioelectron ; 261: 116467, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901392

RESUMO

Light therapy is an effective approach for the treatment of a variety of challenging dermatological conditions. In contrast to existing methods involving high doses and large areas of illumination, alternative strategies based on wearable designs that utilize a low light dose over an extended period provide a precise and convenient treatment. In this study, we present a battery-free, skin-integrated optoelectronic patch that incorporates a coil-powered circuit, an array of microscale violet and red light emitting diodes (LEDs), and polymer microneedles (MNs) loaded with 5-aminolevulinic acid (5-ALA). These polymer MNs, based on the biodegradable composite materials of polyvinyl alcohol (PVA) and hyaluronic acid (HA), serve as light waveguides for optical access and a medium for drug release into deeper skin layers. Unlike conventional clinical photomedical appliances with a rigid and fixed light source, this flexible design allows for a conformable light source that can be applied directly to the skin. In animal models with bacterial-infected wounds, the experimental group with the combination treatment of metronomic photodynamic and light therapies reduced 2.48 log10 CFU mL-1 in bactericidal level compared to the control group, indicating an effective anti-infective response. Furthermore, post-treatment analysis revealed the activation of proregenerative genes in monocyte and macrophage cell populations, suggesting enhanced tissue regeneration, neovascularization, and dermal recovery. Overall, this optoelectronic patch design broadens the scope for targeting deep skin lesions, and provides an alternative with the functionality of standard clinical light therapy methods.


Assuntos
Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Camundongos , Humanos , Álcool de Polivinil/química , Ácido Aminolevulínico/uso terapêutico , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/química , Ácido Aminolevulínico/administração & dosagem , Técnicas Biossensoriais , Ácido Hialurônico/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Pele/efeitos da radiação , Pele/microbiologia , Desenho de Equipamento
18.
Life Sci ; 351: 122808, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852796

RESUMO

As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.


Assuntos
Ácido Aminolevulínico , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ácido Aminolevulínico/farmacologia , Humanos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo
19.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38696132

RESUMO

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Assuntos
Ácido Aminolevulínico , Neoplasias da Mama , Ouro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Ouro/química , Ouro/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Resinas Acrílicas/química , Feminino , Ácido Fólico/química , Sobrevivência Celular/efeitos dos fármacos
20.
Front Biosci (Landmark Ed) ; 29(5): 199, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812322

RESUMO

BACKGROUND: Due to its non-invasive and widely applicable features, photodynamic therapy (PDT) has been a prominent treatment approach against cancer in recent years. However, its widespread application in clinical practice is limited by the dark toxicity of photosensitizers and insufficient penetration of light sources. This study assessed the anticancer effects of a novel photosensitizer 5-(4-amino-phenyl)-10,15,20-triphenylporphyrin with diethylene-triaminopentaacetic acid (ATPP-DTPA)-mediated PDT (hereinafter referred to as ATPP-PDT) under the irradiation of a 450-nm blue laser on colorectal cancer (CRC) in vivo and in vitro. METHODS: After 450-nm blue laser-mediated ATPP-PDT and the traditional photosensitizer 5-aminolevulinic acid (5-ALA)-PDT treatment, cell viability was detected through Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Reactive oxygen species (ROS) generation was quantified by flow cytometry and fluorescence microscopy. Western blotting and transcriptome RNA sequencing and functional experiments were used to evaluate cell apoptosis and its potential mechanism. Anti-tumor experiment in vivo was performed in nude mice with subcutaneous tumors. RESULTS: ATPP-DTPA had a marvelous absorption in the blue spectrum. Compared with 5-ALA, ATPP-DTPA could achieve significant killing effects at a lower dose. Owing to generating an excessive amount of ROS, 450-nm blue laser-mediated PDT based on ATPP-DTPA resulted in evident growth inhibition and apoptosis in CRC cells in vitro. After transcriptome RNA sequencing and functional experiments, p38 MAPK signaling pathway was confirmed to be involved in the regulation of apoptosis induced by 450-nm blue laser-mediated ATPP-PDT. Additionally, animal studies using xenograft model confirmed that ATPP-PDT had excellent anti-tumor effect and reasonable biosafety in vivo. CONCLUSIONS: PDT mediated by 450-nm blue laser combined with ATPP-DTPA may be a novel and effective method for the treatment of CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Apoptose/efeitos dos fármacos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Lasers , Sobrevivência Celular/efeitos dos fármacos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA