Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Stat ; 49(12): 3178-3194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035605

RESUMO

This paper aims to discuss the Bayesian estimation approach for the zero-inflated cure class of models, which extends the standard cure model by accommodating zero-inflated data in the survival analysis context. A comprehensive simulation study is carried out to assess the performance of the estimation procedure. A new estimation methodology is illustrated using a real dataset related to women diagnosed with invasive cervical cancer in Brazil.

2.
Viruses ; 11(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683644

RESUMO

BACKGROUND: Hantavirus disease in humans is rare but frequently lethal in the Neotropics. Several abundant and widely distributed Sigmodontinae rodents are the primary hosts of Orthohantavirus and, in combination with other factors, these rodents can shape hantavirus disease. Here, we assessed the influence of host diversity, climate, social vulnerability and land use change on the risk of hantavirus disease in Brazil over 24 years. METHODS: Landscape variables (native forest, forestry, sugarcane, maize and pasture), climate (temperature and precipitation), and host biodiversity (derived through niche models) were used in spatiotemporal models, using the 5570 Brazilian municipalities as units of analysis. RESULTS: Amounts of native forest and sugarcane, combined with temperature, were the most important factors influencing the increase of disease risk. Population at risk (rural workers) and rodent host diversity also had a positive effect on disease risk. CONCLUSIONS: Land use change-especially the conversion of native areas to sugarcane fields-can have a significant impact on hantavirus disease risk, likely by promoting the interaction between the people and the infected rodents. Our results demonstrate the importance of understanding the interactions between landscape change, rodent diversity, and hantavirus disease incidence, and suggest that land use policy should consider disease risk. Meanwhile, our risk map can be used to help allocate preventive measures to avoid disease.


Assuntos
Infecções por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/transmissão , Roedores/virologia , Análise Espaço-Temporal , Zoonoses/virologia , Animais , Brasil/epidemiologia , Clima , Doenças Transmissíveis Emergentes , Reservatórios de Doenças/virologia , Ecossistema , Fazendeiros , Orthohantavírus , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/prevenção & controle , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/prevenção & controle , Humanos , Saúde Pública
3.
Int J Radiat Biol ; 95(8): 1058-1071, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31008687

RESUMO

Purpose: The goal was to compare the micronucleus (MN) and dicentric plus ring chromosomes (D + R) assays for dose assessment in cases of partial body irradiations (PBI). Materials and methods: We constructed calibration curves for each assay at doses ranging from 0 to 5 Gy of X-rays at dose rate of 0.275 Gy/min. To simulate partial-body exposures, blood samples from two donors were irradiated with 0.5, 1, 2 and 4 Gy and the ratios of irradiated to unirradiated blood were 25, 50, and 100%. Different tests were used to confirm if all samples were overdispersed or zero-inflated and for partial-body dose assessment we used the Qdr, Dolphin and Bayesian model. Results: In our samples for D + R calibration curve, practically all doses agreed with Poisson assumption, but MN exhibited overdispersed and zero-inflated cellular distributions. The exact Poisson tests and zero-inflated tests demonstrate that virtually all samples of D + R from PBI simulation fit the Poisson distribution and were not zero-inflated, but the MN samples were also overdispersed and zero-inflated. In the partial-body estimation, when Qdr and Dolphin methods were used the D + R results were better than MN, but the doses estimation defined by the Bayesian methodology were more accurate than the classical methods. Conclusions: Dicentric chromosomes continue to prove to be the best biological marker for dose assessment. However exposure scenarios of partial-body estimation, overdispersion and zero-inflation may not occur, it being a critical point not only for dose assessment, but also to confirm partial-body exposure. MN could be used as alternative assay for partial-body dose estimation, but in case of an accident without any information, the MN assay could not define whether the accident was a whole-body irradiation (WBI) or a PBI.


Assuntos
Testes para Micronúcleos , Doses de Radiação , Cromossomos em Anel , Aberrações Cromossômicas , Relação Dose-Resposta à Radiação , Humanos , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA