Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Hum Immunol ; 85(4): 110825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795676

RESUMO

Natural products have been used to treat inflammatory reactions and led to the discovery of new anti-inflammatory drugs. Geopropolis (GEO) is produced by stingless bees and has been used by indigenous people to improve the immune functions. Here, a possible synergism between GEO and dexamethasone (DEX) was assessed on human peripheral blood mononuclear cells (PBMC) stimulated by lipopolysaccharide (LPS). PBMC viability was evaluated by the MTT, apoptosis/necrosis by flow cytometry, cytokine and eicosanoids production by ELISA, and intracellular pathways by polymerase chain reaction. GEO and DEX alone or in combination did not affect cell viability. GEO in combination with lower concentrations of DEX inhibited cytokine production (TNF-α, IL-1ß, and IL-10). No effects were seen on eicosanoids nor in intracellular pathways. Despite not always being more efficient than the isolated treatments, GEO + DEX seemed to be promising and allow the use of DEX in lower concentrations, reducing adverse effects.


Assuntos
Anti-Inflamatórios , Dexametasona , Leucócitos Mononucleares , Lipopolissacarídeos , Própole , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Abelhas , Anti-Inflamatórios/farmacologia , Animais , Dexametasona/farmacologia , Lipopolissacarídeos/farmacologia , Própole/farmacologia , Células Cultivadas , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico
2.
Discov Nano ; 19(1): 92, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801473

RESUMO

This study explores the green synthesis of silver nanoparticles (AgNPs) using a methanolic extract of fermented pollen from Tetragonisca angustula, a species of stingless bees. The AgNPs exhibit spherical morphology, low charge values, and suspension stability, with their unique composition attributed to elements from the pollen extract. Antioxidant assays show comparable activity between the pollen extract and AgNPs, emphasizing the retention of antioxidant effects. The synthesized AgNPs demonstrate antimicrobial activity against multidrug-resistant bacteria, highlighting their potential in combating bacterial resistance. The AgNPs exhibit no toxic effects on Drosophila melanogaster and even enhance the hatching rate of eggs. The study underscores the innovative use of stingless bee pollen extract in green synthesis, offering insights into the varied applications of AgNPs in biomedicine.

3.
Chem Biodivers ; 21(6): e202301982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608157

RESUMO

Geopropolis resins are produced by stingless bees (Meliponinae), developed from the collection of resinous materials, waxes and exudates, from the flora of the region where stingless bees are present, in addition to the addition of clay or earth in its composition. Several biological activities are attributed to Ethanol Extracts of Geopropolis (EEGP). The bioactive properties are associated with the complex chemical composition that the samples have. This work aims to evaluate the biological activities of the EEGP, in order to contribute with a natural therapeutic alternative, to face infections, mainly those caused by resistant strains of Staphylococcus aureus. The EEGP MIC tests showed antibacterial activity against two strains of S. aureus, both at concentrations of 550 µg/mL. The MBC performed with the inhibition values showed that the EEGP has bacteriostatic activity in both strains. Biofilm inhibition rates exhibited an average value greater than 65 % at the highest concentration. The EEGP antioxidant potential test showed good antioxidant activity (IC50) of 11.05±1.55 µg/mL. In the cytotoxicity test against HaCat cells, after 24 hours, EEGP induced cell viability at the three tested concentrations (550 µg/mL: 81.68±3.79 %; 1100 µg/mL: 67.10±3.76 %; 2200 µg/mL: 67.40±1.86 %). In view of the above, the safe use of EEGP from the brazilian northeast could be proven by the cytotoxicity test, and its use as an antioxidant and antibacterial agent has proven to be effective, as an alternative in combating oxidative stress and microorganisms such as S. aureus, which, through the spread and ongoing evolution of drug resistance, generates an active search for effective solutions.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Animais , Abelhas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Humanos , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Própole/química , Própole/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga
4.
Chem Biodivers ; 21(6): e202302084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629893

RESUMO

This study explores the potential of propolis, a resinous substance produced by bees, from Melipona rufiventris species. With its composition encompassing resin, wax, pollen, and soil, propolis holds historical significance in traditional medicine within tropical regions. This research is driven by the scarcity of information surrounding M. rufiventris propolis, prompting an investigation into its chemical constituents, in vivo toxicity, and antimicrobial, antioxidant, and anti-inflammatory properties. This exploration could potentially uncover novel applications for this natural product, bolstering both meliponiculture practices and the preservation of native bee populations. The propolis was sampled in Cabo Verde-MG and underwent ethanolic extraction to yield an extract (EEP) for analysis. Chemical assessments (Folin-Ciocalteau, and UHPLC-HRMS) revealed the presence of polyphenols, including flavonoids. The EEP demonstrated higher antimicrobial activity against Gram-positive bacteria and exhibited efficacy against multiresistant strains isolated from complex wounds. Synergistic interactions with commercial antibiotics were also observed. Furthermore, anti-inflammatory evaluations showcased the EEP's potential in reducing NF-kB activation and TNF-α release at non-toxic concentrations. Despite these promising biological activities, the EEP exhibited no antiproliferative effects and demonstrated safety in both the MTS assay and the G. mellonella model. Collectively, these findings highlight the M. rufiventris propolis extract as a valuable reservoir of bioactive compounds with multifaceted potential.


Assuntos
Anti-Inflamatórios , Antioxidantes , Testes de Sensibilidade Microbiana , Própole , Própole/química , Própole/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Abelhas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação
5.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498593

RESUMO

Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps. However, although stingless bees are the most representative group of eusocial bees, little is known about their odorant, gustatory, and ionotropic receptor genes. Here, we analyze the transcriptome of the proboscis and antennae of the stingless bee Tetragonisca fiebrigi. We identified and annotated 9 gustatory and 15 ionotropic receptors. Regarding the odorant receptors, we identified 204, and we were able to annotate 161 of them. In addition, we compared the chemosensory receptor genes of T. fiebrigi with those annotated for other species of Hymenoptera. We found that T. fiebrigi showed the largest number of odorant receptors compared with other bees. Genetic expansions were identified in the subfamilies 9-exon, which was also expanded in ants and paper wasps; in G02A, including receptors potentially mediating social behavior; and in GUnC, which has been related to pollen and nectar scent detection. Our study provides the first report of chemosensory receptor genes in T. fiebrigi and represents a resource for future molecular and physiological research in this and other stingless bee species.


Assuntos
Receptores Odorantes , Animais , Abelhas/genética , Abelhas/fisiologia , Receptores Odorantes/genética , Transcriptoma , Filogenia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Genes de Insetos , Anotação de Sequência Molecular , Perfilação da Expressão Gênica
6.
Chem Biodivers ; 21(3): e202301641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358043

RESUMO

This study shows the profile of volatile organic compounds (VOCs) from pupae and larvae of Melipona quadrifasciata anthidioides Lepeletier subjected to three death induction techniques for hygienic behavior (HB) studies: freezing in liquid nitrogen (LN2), freezing in a freezer (FRZ) and piercing of offspring with an entomological pin (PIN). The VOCs from larvae and pupae were obtained through headspace solid-phase microextraction and characterized using gas chromatography coupled to mass spectrometry. In addition, an HB test was performed on the colonies. The main classes of VOCs were hydrocarbons, terpenes and alcohols. Multivariate analysis was applied and showed that there was a separation in the compound profiles between the different treatments. The HB test in the colonies showed that 24 hours after the application of the techniques, the bees removed more dead larvae in LN2 treatment (83.5 %), while after 48 hours more larvae were removed in the LN2 and FRZ treatments (92.3 %). When compared to pupae removal, larvae removal was significantly faster in LN2.


Assuntos
Compostos Orgânicos Voláteis , Abelhas , Animais , Compostos Orgânicos Voláteis/análise , Escala de Avaliação Comportamental , Cromatografia Gasosa-Espectrometria de Massas , Larva , Espectrometria de Massas , Pupa , Microextração em Fase Sólida
7.
Chemosphere ; 349: 140878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061563

RESUMO

Bees play a crucial role as natural pollinators, ensuring the maintenance and stability of the world's biodiversity and agricultural crops. Native bees in neotropical regions belong to the Meliponini tribe, a larger group that differs significantly in behavior and biology from honeybees (e.g., Apis mellifera) and solitary bees (e.g., Osmia spp.). Hence, the exposure and effects of pesticides is also likely to vary among these different species. The aim of this study was to develop an analytical method to determine the presence of the neonicotinoid clothianidin in the Brazilian native stingless bee Tetragonisca angustula (local common name: Jataí). The method used for the chemical analysis involved a QuEChERS technique combined with UHPLC-MS/MS analysis. The developed method was subsequently used to analyze collected field samples. In addition, the acute toxicity of the pesticide to T. angustula was evaluated in a laboratory bioassay evaluating both lethal and sublethal endpoints. The analytical method was successfully developed with detection and quantification limits of 1.55 and 5 µg L-1, respectively, along with a linear range of 1-5 ng mL-1. Clothianidin was detected in environmental samples (9.2-32.9 ng g-1), and the exposure experiments demonstrated acute oral toxicity to adults of T. angustula, (24 h-LD50 of 0.16 ng a.i./bee), as well as no significative interference in acetylcholinesterase activity. Considering the obtained toxicity endpoints for T. angustula and those reported in the literature for other bee species, this study revealed that T. angustula is more (lethally) sensitive to clothianidin than other bee species, including those commonly used in environmental risk assessment studies. This thus also supports the call for using native test species in (regional) risk assessment evaluations.


Assuntos
Inseticidas , Praguicidas , Abelhas , Animais , Acetilcolinesterase , Espectrometria de Massas em Tandem , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Inseticidas/toxicidade
8.
Chem Biodivers ; 21(2): e202301407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116922

RESUMO

Melipona subnitida (Ducke, 1911), a species of stingless bee, popularly known as Jandaíra, has a wide distribution in the Brazilian Northeast region, being an important pollinator of the Caatinga biome. This bee produces products such as honey, geopropolis, pollen (saburá) and wax that are traditionally used for therapeutic purposes and some studies report the biological properties, as well as its chemical composition. This review aimed to select, analyze and gather data published in the literature focusing on the chemical profile and bioactivities described for M. subnitida products. Data collection was carried out through the Capes Journal Portal platform, using the following databases: Web of Science, Scopus, and PubMed. Original articles published in English and Portuguese were included, with no time limitation. The chemical composition of M. subnitida products has been investigated through chromatographic analysis, demonstrating the presence of a variety of phenolic compounds, such as flavonoids and phenylpropanoids, among other classes of secondary metabolites. These products also have several biological activities, including antioxidant, healing, antinociceptive, anti-inflammatory, antidepressant, antidyslipidemic, antiobesity, antifungal, antibacterial and prebiotic. Among the biological activities reported, the antioxidant activity was the most investigated. These data show that products derived from the stingless bee M. subnitida have promising bioactive compounds. This review provides useful information about the bioactivities and chemical profile of Melipona subnitida bee products, and a direction for future research, which should focus on understanding the mechanisms of action associated with the already elucidated pharmacological activities, as well as the bioactive properties of the main isolate's constituents identified in the chemical composition of these products.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Fenóis/análise , Antifúngicos
9.
Foods ; 12(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37685249

RESUMO

The chemical composition of stingless bee honey and propolis depends on the plant sources they are derived from, and thus reflects the flora available in the vicinity of the hives, the preferences of the bee species, and the climate (altitude and temperature). To understand the relative influence of these factors, we studied the composition of honey and propolis of the stingless bee Scaptotrigona mexicana. Samples from 24 colonies were analyzed: 12 each from two S. mexicana meliponaries located in the state of Chiapas in southern Mexico, approximately 8.5 km apart, Tuxtla Chico and Cacahoatán. The chemical composition of honey and propolis was studied using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), respectively. The antioxidant activity of propolis was also studied. Chemometric analyses were applied. The Tuxtla Chico honey samples contained higher concentrations of glucose and fructose, while the Cacahoatán samples displayed a rich composition of di- and trisaccharides. These differences can be attributed to the distinct nectar sources utilized by the bees at each location. Propolis compositions in the two locations also demonstrated qualitative differences, indicating a specific choice of resins by the bees. The observed substantial variations in the chemical composition of propolis and honey of S. mexicana from two locations relatively close to each other supports the assumption that bee species cannot be considered the most important factor in determining their chemistry.

10.
Front Microbiol ; 14: 1221724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637114

RESUMO

Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless bee Scaptotrigona depilis and the yeast Zygosaccharomyces sp. SDBC30G1. The larvae of S. depilis ingest fungal filaments of Zygosaccharomyces sp. SDBC30G1 to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work, we find a similar insect-microbe interaction in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namely Scaptotrigona bipunctata, S. postica, S. tubiba, Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor, and Partamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed for S. depilis. The phylogenetic analyses including various Zygosaccharomyces revealed that strains isolated from the brood cells formed a branch separated from the previously described Zygosaccharomyces species, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.

11.
Cytogenet Genome Res ; 163(1-2): 52-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37544288

RESUMO

The stingless bees Tetragonisca angustula and Tetragonisca fiebrigi are widely distributed in Brazil, and both are commonly known as "jataí." Our goal was to investigate the possible origin of the B chromosomes in T. fiebrigi, a cytotaxonomic trait that differentiates T. fiebrigi from T. angustula. We analyzed diploid chromosome number (2n), B chromosome incidence, patterns of constitutive heterochromatin, and in situ localization of different repetitive DNA probes in T. angustula and T. fiebrigi. Both species displayed 2n = 34, with similar karyotype structures. One to three B chromosomes were observed in T. fiebrigi only. Constitutive heterochromatin was distributed on one arm of all chromosomes in both species, and T. fiebrigi B chromosomes were mainly heterochromatic with one euchromatic extremity. The (GA)15 and (CAA)10 microsatellite probes marked the euchromatic arms of all chromosomes in both species without marking the B chromosomes. The 18S ribosomal DNA (rDNA) probe marked 10 chromosomes in T. angustula and 6 A chromosomes in T. fiebrigi with an additional marking on 1B in individuals with 3B. The Tan-Bsp68I repetitive DNA probe marked the heterochromatic portion of all T. fiebrigi A and B chromosomes. This probe also marked the heterochromatic portion of all T. angustula chromosomes; therefore, both alternative hypotheses to the B chromosome origin are possible: (i) from the A chromosome complement of T. fiebrigi (intraspecific origin); or (ii) a by-product of genome reshuffling following the hybridization between T. fiebrigi and T. angustula (interspecific origin).


Assuntos
Cromossomos Humanos Par 10 , Heterocromatina , Humanos , Abelhas , Animais , Heterocromatina/genética , Brasil , Diploide , Fenótipo
12.
Curr Res Food Sci ; 7: 100543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455680

RESUMO

Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.

13.
Sci Total Environ ; 893: 164790, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321503

RESUMO

The disposal of plastics and metal-derived compounds results in the contamination of the environment with nano/microparticles, leading to the exposure of various organisms to these harmful particles. However, the impacts of these particles on pollinating insects, which provide relevant ecosystem services, are not well understood. The aim of this study was to assess the effects of microscopic particles on the tropical pollinator Partamona helleri (Apinae: Meliponini), specifically evaluating the toxicity of plastic microparticles (polystyrene - PS, and polyethylene terephthalate - PET) and nanoparticles of a metal oxide (titanium dioxide - TiO2) via larval ingestion by bees reared in vitro. The survival rate of P. helleri larvae was not affected by the ingestion of particles of PS (500 ng/bee), PET (500 ng/bee), or TiO2 (10 µg/bee) compared to the non-treated diet (control or diet without the particles). Adults derived from treated larvae had increased body weight compared to the control, and the walking behavior of adults was altered by the ingestion of particles. Adults that ingested PET or TiO2 as larvae tended to rest for a longer time and interact more with other bees than the control. Hemocyte counts also changed, with a shift in the proportion of plasmatocytes and prohemocytes in treated individuals. Our findings suggest that even levels considered low for honey bees of exposure to plastic microparticles or metal nanoparticles can harm the health and behavior of stingless bees.


Assuntos
Ecossistema , Microplásticos , Abelhas , Animais , Plásticos/toxicidade , Larva
14.
Foods ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048257

RESUMO

Propolis collected by stingless bees is a valuable biocultural resource and a source of bioactive compounds. Methodologies to establish both the geographic origin and the potential pharmacological activity of propolis of stingless bees are required to regulate their sustainable use. The aim of this study was to classify Melipona beecheii propolis according to its phenolic compound content and potential pharmacological activity, using in vitro assays and statistical methodologies of multivariate analysis, hierarchical cluster analysis, and principal component analysis. Propolis samples were collected from seven states in southeastern Mexico. Total phenolic content and flavonoids were determined spectrophotometrically, and antioxidant, anti-inflammatory, and antimicrobial activities were evaluated. Both total phenolic content and flavonoids, and in vitro bioactivity potential of propolis extracts showed significant variations. Multivariate analysis, hierarchical cluster analysis, and principal component analysis enabled us to distinguish and classify propolis produced by M. beecheii according to similarity in terms of total phenolic content, in vitro bioactivity potential, and geographical origin. This strategy could be used to establish regulations for sustainable use, marketing, and industrial applications.

15.
Environ Sci Pollut Res Int ; 30(24): 65401-65411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37084054

RESUMO

The increase in agricultural productivity associated with the emergence and the extensive use of pesticides is undeniable. However, strong evidence indicates that this continuous demand is causing serious environmental impacts and bringing toxic effects to associated biota as pollinating insects. The present work aims the determination of the insecticide abamectin (ABA) and the fungicide difenoconazole (DIF) in strawberry flowers (Fragaria x ananassa DUCH.) and pollen sampled from beehives of the stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) located nearby strawberry fields. For analysis, QuEChERS method was optimized, and the analytical performance of those two pesticides was verified. Then, the method was applied to strawberry flowers and the pollen was sampled during three field campaigns. While abamectin was not detected, the systemic fungicide difenoconazole was determined in almost all flowers and pollen samples, demonstrating the major persistence of this pesticide in investigated matrices. The results were then discussed about the difenoconazole application rate and transport to colonies to estimate a preliminary environmental risk assessment for stingless native bees. All calculations were proceeded considering exposure rates and toxicity data from the literature, adapted from Apis mellifera studies. In this sense, the determination, application, and discussion about risk assessment figure out as an important tool to the knowledge about the preliminary risks of native bees exposed to pesticides.


Assuntos
Fragaria , Fungicidas Industriais , Himenópteros , Praguicidas , Urticária , Abelhas , Animais , Pólen
16.
Food Res Int ; 164: 112391, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737975

RESUMO

Malícia honey produced by the jandaíra bee has hypoglycaemic and hypolipidemic effects and antioxidant activity in vitro and in vivo, which makes it potential adjuvant treatment for obesity. This study aimed to evaluate the effects of malícia honey on somatic and biochemical parameters, depressive-like behaviour and anti-inflammatory activity in obese rats. A total of 40 adult male Wistar rats were initially randomized into a healthy group (HG, n = 20) that consumed a control diet, and an obese group (OG, n = 20) which consumed a cafeteria diet for eight weeks. Then, they were subdivided into four groups: healthy (HG, n = 10); healthy treated with malícia honey (HGH, n = 10); obese (OG, n = 10); and obese treated with malícia honey (OGH, n = 10), maintaining their diets for another eight weeks. The HGH and OGH groups received malícia honey (1000 mg/kg body weight) via gavage. Food intake was monitored daily and body weight was monitored weekly. Biochemical tests related to obesity and glucose and insulin tolerance test, somatic parameters, histological parameters and quantification of NF-κB in the brain were performed. Treatment with malícia honey improved depressive-like behaviour, reduced weight (14 %), body mass index (6 %), and improved lipid profile, leptin, insulin, HOMA-ß, and glucose and insulin tolerance in obese rats. It also decreased NF-κB (58.08 %) in the brain. Malícia honey demonstrated anti-obesity and anti-inflammatory effects, and reversed changes in obesity-induced depressive-like behaviour.


Assuntos
Mel , Mimosa , Abelhas , Ratos , Masculino , Animais , Ratos Wistar , NF-kappa B , Obesidade , Glucose , Insulina , Anti-Inflamatórios/farmacologia
17.
Curr Res Food Sci ; 6: 100386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846470

RESUMO

The biodiversity of Ecuadorian stingless bees is almost 200 species. Traditional pot-honey harvest in Ecuador is mostly done from nests of the three genera selected here Geotrigona Moure, 1943, Melipona Illiger, 1806, and Scaptotrigona Moure, 1942. The 20 pot-honey samples collected from cerumen pots and three ethnic honeys "abeja de tierra", "bermejo", and "cushillomishki" were analyzed for qualitative and quantitative targeted 1H-NMR honey profiling, and for the Honey Authenticity Test by Interphase Emulsion (HATIE). Extensive data of targeted organic compounds (41 parameters) were identified, quantified, and described. The three honey types were compared by ANOVA. Amino acids, ethanol, hydroxymethylfurfural, aliphatic organic acids, sugars, and markers of botanical origin. The number of phases observed with the HATIE were one in Scaptotrigona and three in Geotrigona and Melipona honeys. Acetic acid (19.60 ± 1.45 g/kg) and lactic acid (24.30 ± 1.65 g/kg) were particularly high in Geotrigona honey (in contrast to 1.3 g/kg acetic acid and 1.6 g/kg lactic acid in Melipona and Scaptotrigona), and with the lowest fructose + glucose (18.39 ± 1.68) g/100g honey compared to Melipona (52.87 ± 1.75) and Scaptotrigona (52.17 ± 0.60). Three local honeys were tested using PCA (Principal Component Analysis), two were assigned with a correct declared bee origin, but "bermejo" was not a Melipona and grouped with the Scaptotrigona cluster. However after HCA (Hierarchical Cluster Analysis) the three honeys were positioned in the Melipona-Scaptotrigona cluster. This research supports targeted 1H-NMR-based profiling of pot-honey metabolomics approach for multi-parameter visualization of organic compounds, as well as descriptive and pertained multivariate statistics (HCA and PCA) to discriminate the stingless bee genus in a set of Geotrigona, Melipona and Scaptotrigona honey types. The NMR characterization of Ecuadorian honey produced by stingless bees emphasizes the need for regulatory norms. A final note on stingless bee markers in pot-honey metabolites which should be screened for those that may extract phylogenetic signals from nutritional traits of honey. Scaptotrigona vitorum honey revealed biosurfactant activity in the HATIE, originating a fingerprint Honey Biosurfactant Test (HBT) for the genus in this set of pot-honeys.

18.
Environ Toxicol Chem ; 42(5): 1022-1031, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807197

RESUMO

The decline of insect pollinators is a significant concern within the current biodiversity crisis. The paradox between the benefits that these animals represent to humans and the evidence of human activities driving their extinction calls for the urgent protection of bees. To address the role of chemical pollution in this scenario, we assessed the acute toxicity as well as four biomarker responses (cholinesterase [ChE], glutathione S-transferase, catalase, and lipid peroxidation [LPO]) elicited by dietary 24-h exposure to three insecticides (malathion, imidacloprid, and fipronil) on the stingless neotropical bee Tetragonisca angustula and the honeybee Apis mellifera. Malathion was the most toxic substance to both species, with 48-h median lethal doses (LD50s) of 0.25 ng/bee to A. mellifera and 0.02 ng/bee to T. angustula. Fipronil was also highly toxic and presented a similar toxicity to both species, with 48-h LD50s of 0.5 ng/bee (A. mellifera) and 0.4 ng/bee (T. angustula). Imidacloprid had the lowest acute toxicity with a 48-h LD50 of 29 ng/bee for A. mellifera, whereas T. angustula tolerated exposure higher than 35 ng/bee. Apparent biomarker responses were observed in bees of both species that survived exposure to higher concentrations of malathion (ChE inhibition) and fipronil (increased LPO). Our results suggest that specific sensitivity to insecticides varies greatly among compounds and pollinator species, but the use of different representative species can facilitate the prioritization of substances regarding their risk to pollinators. Further research is necessary to better characterize the risk that pesticides represent in neotropical agricultural landscapes. Environ Toxicol Chem 2023;42:1022-1031. © 2023 SETAC.


Assuntos
Abelhas , Inseticidas , Animais , Humanos , Biomarcadores , Costa Rica , Inseticidas/toxicidade , Inseticidas/química , Malation , Neonicotinoides/toxicidade
19.
Rev. Ciênc. Agrovet. (Online) ; 21(4): 468-480, dez. 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1413543

RESUMO

Bees are responsible for pollination, which is an important ecosystem service. They also provide the production of honey, pollen or saburá, propolis, among other products. The breeding of native bees has been growing, because of the particular characteristics of each species and its products. Therefore, the objective was to know the profile of this breeder, called meliponicultor. Then, a semi-structured questionnaire was used, widely publicized on social networks, in April and May 2020. This was attended by 718 Brazilian and foreign breeders of native bees, of which 80.3% practice the activity as a hobby, most beginners in the activity, with the main objective of leisure and family consumption of honey. Over 80% keep bees in meliponaries in urban areas. Among the products, the swarm is the most commercialized, with species that are easy to handle, less defensive and adapted to the region being preferred. Swarms are also acquired through bait, rescue and division. The bees are created in boxes of different materials, the main one being wood and the tools are easily found in the commerce, as well as easy to improvise. Beekeepers reported concerns about deforestation, increasing urban areas, fires, global warming, pesticides, pest attacks and theft. Digital media was cited as the main source of information, followed by books and close people. The creators also stated that they do not trust 100% the information that reaches them, regardless of the source.(AU)


As abelhas são responsáveis por um valioso serviço ecossistêmico, a polinização, fornecendo ainda a produção de mel, pólen ou saburá, própolis, entre outros. A criação de abelhas nativas vem crescendo, impulsionada pelas características particulares de cada espécie e de seus produtos. Logo, objetivou-se conhecer o perfil deste criador, chamado de meliponicultor seus interesses e motivações, bem como suas fontes de informação e sobre a dinâmica econômica dessa atividade na atualidade. Para isso utilizou-se um questionário semiestruturado, amplamente divulgado nas redes sociais, nos meses de abril e maio de 2020. Este contou com a participação de 718 criadores brasileiros e estrangeiros, dos quais 80,3% praticam a atividade por hobby, maioria iniciantes na atividade, tendo como principal objetivo o lazer e o consumo familiar do mel. Mais de 80% mantém as abelhas em meliponários em áreas urbanas. Dentre os produtos, o enxame é o mais comercializado, sendo preferidas espécies de fácil manejo, pouco defensivas e adaptadas à região, sendo os enxames também adquiridos através de iscas, resgate e divisão. A criação é realizada em caixas de diversos materiais, sendo o principal a madeira e as ferramentas são facilmente encontradas no comércio, bem como, de fácil improvisação. Os criadores citaram preocupações com desmatamento, aumento das áreas urbanas, queimadas, aquecimento global, agrotóxicos, ataque de pragas e furtos. Os meios digitas foi citado como a principal fonte de informações, seguidos por livros e pessoas próximas. Os criadores apontaram ainda que não confiam 100% nas informações que chegam até eles, independente da fonte.(AU)


Assuntos
Abelhas/crescimento & desenvolvimento , Criação de Abelhas/classificação , Brasil , Biodiversidade
20.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431788

RESUMO

The chemical composition of propolis of four species of stingless bees (SLBs) from Argentina was determined, and its antibacterial and anticancer activity was evaluated on selected types of microbes and cancer cell lines. Volatile secretions of all propolis samples are formed by 174 C2-C15 organic compounds, mainly mono- and sesquiterpenes and their derivatives. The chromatograms of ether extracts showed 287 peaks, of which 210 were identified. The most representative groups in the extracts of various propolis samples were diterpenoids (mainly resin acids), triterpenoids and phenolic compounds: long-chain alkenyl phenols, resorcinols and salicylates. The composition of both volatile and extractive compounds turned out to be species-specific; however, in both cases, the pairwise similarity of the propolis of Scaptotrigona postica and Tetragonisca fiebrigi versus that of Tetragona clavipes and Melipona quadrifasciata quadrifasciata was observed, which indicated the similarity of the preferences of the respective species when choosing plant sources of resin. The composition of the studied extracts completely lacked flavonoids and phenolcarboxylic acids, which are usually associated with the biological activity and medicinal properties of propolis. However, tests on selected microbial species and cancer cell lines showed such activity. All propolis samples tested against Paenibacillus larvae, two species of Bacillus and E. coli showed biofilm inhibition unrelated to the inhibition of bacterial growth, leading to a decrease in their pathogenicity. Testing the anticancer activity of ether extracts using five types of cell cultures showed that all four types of propolis studied inhibit the growth of cancer cells in a dose- and time-dependent manner. Propolis harvested by T. clavipes demonstrated the highest cytotoxicity on all tested cell lines.


Assuntos
Ascomicetos , Própole , Abelhas , Animais , Própole/farmacologia , Própole/química , Escherichia coli , Argentina , Flavonoides/química , Resinas Vegetais , Éteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA