Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 78, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740670

RESUMO

Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Brasil , Poríferos/microbiologia
2.
World J Microbiol Biotechnol ; 38(10): 169, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35882683

RESUMO

Despite hydrolytic exoenzymes and biosurfactants having been gradually reported from the poriferan microbiome, little is known about these bioproducts in microorganisms inhabiting Homoscleromorpha sponges. Here, we investigated the production of hydrolases and biosurfactants in bacteria isolated from three shallow-water homoscleromorph species, Oscarella sp., Plakina cyanorosea, and Plakina cabofriense. A total of 99 of 107 sponge-associated bacterial isolates exhibited activity for at least one of the analyzed hydrolases. Following fermentation in Luria-Bertani (LB) and Tryptic Soy Broth (TSB), two isolates, 80BH11 and 80B1:1010b, showed higher lipase and peptidase activities. Both of them belonged to the Bacillus genus and were isolated from Oscarella. Central composite design leveraged up the peptidase activity in 280% by Bacillus sp. 80BH11 in the TSB medium for 48 h at 30 °C. The optimized model also revealed that pH 6.5 and 45 °C were the best conditions for peptidase reaction. In addition, Bacillus sp. 80BH11 was able to release highly emulsifying and remarkably stable surfactants in the LB medium. Surfactin was finally elucidated as the biosurfactant generated by this sponge-derived Bacillus. In conclusion, we hope to have set the scenery for further prospecting of industrial enzymes and biosurfactants in Homoscleromorpha microbiomes.


Assuntos
Bacillus , Poríferos , Animais , Bactérias , Peptídeo Hidrolases , Tensoativos/química
3.
Front Microbiol ; 12: 660779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177840

RESUMO

Antarctic sponges harbor a diverse range of microorganisms that perform unique metabolic functions for nutrient cycles. Understanding how microorganisms establish functional sponge-microbe interactions in the Antarctic marine ecosystem provides clues about the success of these ancient animals in this realm. Here, we use a culture-dependent approach and genome sequencing to investigate the molecular determinants that promote a dual lifestyle in three bacterial genera Sporosarcina, Cellulophaga, and Nesterenkonia. Phylogenomic analyses showed that four sponge-associated isolates represent putative novel bacterial species within the Sporosarcina and Nesterenkonia genera and that the fifth bacterial isolate corresponds to Cellulophaga algicola. We inferred that isolated sponge-associated bacteria inhabit similarly marine sponges and also seawater. Comparative genomics revealed that these sponge-associated bacteria are enriched in symbiotic lifestyle-related genes. Specific adaptations related to the cold Antarctic environment are features of the bacterial strains isolated here. Furthermore, we showed evidence that the vitamin B5 synthesis-related gene, panE from Nesterenkonia E16_7 and E16_10, was laterally transferred within Actinobacteria members. Together, these findings indicate that the genomes of sponge-associated strains differ from other related genomes based on mechanisms that may contribute to the life in association with sponges and the extreme conditions of the Antarctic environment.

4.
Front Microbiol ; 11: 592735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488540

RESUMO

Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.

5.
Front Microbiol ; 10: 2799, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849922

RESUMO

Sponges can host diverse and abundant communities of microorganisms, which constitute an interesting source of bioactive compounds. Thus, to broaden our knowledge about the diversity of the microbiota that is found in freshwater sponges, the microbial community of Tubella variabilis was analyzed using culture-independent and culture-dependent approaches. Additionally, sponge-associated bacteria were compared with those living in the surrounding waters. Bacteria were also tested for antimicrobial production. Overall, the microbial composition identified comprises at least 44 phyla belonging mainly to Proteobacteria and low percentages of Bacteroidetes, Acidobacteria, and Verrucomicrobia. Alphaproteobacteria was the dominant class in T. variabilis while Betaproteobacteria was dominant in freshwater. Our data also revealed a high richness of bacteria in comparison to another freshwater sponge and 32 marine sponges. A global comparison of the structure of microbiota of different sponges showed that the main structuring factor may be the sponge environment, with T. variabilis and all freshwater sponges clustering together, and far away from the marine sponges. Bacterial strains from sponges and from freshwater were isolated and 163 morphotypes were phylogenetically identified. These belong to 26 genera, of which 12 were exclusively found in sponge samples and three only in freshwater. Inhibitory activities were also detected among 20-25% of the isolates from sponges and freshwater, respectively. This study presents new information on the composition of the microbial community found in freshwater sponges, which is diverse, abundant and distinct from some marine sponges. Moreover, the antimicrobial activity observed from the bacterial strains might play an important role in shaping microbial communities of the environment.

6.
Antonie Van Leeuwenhoek ; 110(4): 489-499, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28008548

RESUMO

Sponges offer an excellent model to investigate invertebrate-microorganism interactions. Furthermore, bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to characterize the bacteria inhabiting a genus of sponges, Oscarella, and their potentiality for antimicrobial production. Bacterial isolates were recovered from different Oscarella specimens, among which 337 were phylogenetically identified. The culturable community was dominated by Proteobacteria and Firmicutes, and Vibrio was the most frequently isolated genus, followed by Shewanella. When tested for antimicrobial production, bacteria of the 12 genera isolated were capable of producing antimicrobial substances. The majority of strains were involved in antagonistic interactions and inhibitory activities were also observed against bacteria of medical importance. It was more pronounced in some isolated genera (Acinetobacter, Bacillus, Photobacterium, Shewanella and Vibrio). These findings suggest that chemical antagonism could play a significant role in shaping bacterial communities within Oscarella, a genus classified as low-microbial abundance sponge. Moreover, the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing therapies to treat infections caused by multidrug-resistant bacteria. This study was the first to investigate the diversity and antagonistic activity of bacteria isolated from Oscarella spp. It highlights the biotechnological potential of sponge-associated bacteria.


Assuntos
Anti-Infecciosos/metabolismo , Antibiose/fisiologia , Firmicutes/metabolismo , Poríferos/microbiologia , Proteobactérias/metabolismo , Shewanella/metabolismo , Animais , Biodiversidade , Brasil , Firmicutes/classificação , Firmicutes/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Shewanella/classificação , Shewanella/isolamento & purificação
7.
Curr Pharm Biotechnol ; 18(15): 1224-1236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29595106

RESUMO

BACKGROUND: It is known that sponge-associated bacteria are an attractive source of new bioactive substances with biotechnological potential. These include antimicrobials, enzymes and surfactants. However, the potential of these microorganisms remains little investigated due to the difficulty of isolating new bacterial groups that produce original bioactive metabolites and enzymes. METHODS: Cultivation methods are still playing crucial functions in many studies involving bacteria isolated from sponges, and in the traditional approach for biodiscovery by screening culture collections. RESULTS: For instance, culture media which are rich in nutrients favor the fast cultivation in comparison with slower growing bacteria, and diluted and/or poor culture media increase the possibility of growing previously uncultured bacteria. The ability to grow bacteria in culture and to characterize their secondary metabolites is a crucial approach to new biotechnology products of potential value. Many microbial biotechnology compounds used nowadays were extracted from cultured bacteria. CONCLUSION: This review presents and discusses some strategies to isolate and culture bacteria from sponges for biotechnological exploration. Finally, whole genome sequencing of sponge-associated bacteria is proposed as a novel strategy for biodiscovery.


Assuntos
Bactérias/isolamento & purificação , Biotecnologia/métodos , Poríferos/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Temperatura
8.
Mem. Inst. Oswaldo Cruz ; 104(5): 678-682, Aug. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-528072

RESUMO

Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.


Assuntos
Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Poríferos/microbiologia , Pseudomonas putida/química , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Oceanos e Mares , Filogenia , Pseudomonas putida/genética , Pseudomonas putida/isolamento & purificação , Técnica de Amplificação ao Acaso de DNA Polimórfico , RNA Bacteriano/genética , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA