Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 182: 1602-1610, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033823

RESUMO

Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 µg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 µg/mL highly mutagenic and 107.5 µg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 µg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 µg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Fosfolipases A2/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Drosophila melanogaster , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação/genética
2.
Food Chem Toxicol ; 138: 111228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112866

RESUMO

Betulinic acid (BA) is a pentacyclic triterpenoid found in several plant species. Urethane (URE) is a known promutagen. Here, we examine the genotoxicity and mutagenicity of BA alone or in combination with URE using the bone marrow micronucleus assay in mice bone marrow cells and the Somatic Mutation and Recombination Test in Drosophila melanogaster. Findings revealed that BA alone was not genotoxic, but reduced the frequency of micronucleus when compared to the positive control. No significant differences were observed in the cytotoxicity. Biochemical analyzes showed no significant differences for liver (AST and ALT) or renal (creatinine and urea) function parameters, indicating the absence of hepatotoxic and nephrotoxic effects. BA alone did not increase the frequency of mutant spots, but reduced the total frequency of mutant spots when co-administered with URE in both ST and HB crosses. In addition, BA reduced the recombinogenic effect of URE at the highest concentrations of both crosses. In conclusion, under experimental conditions, BA has modulatory effects on the genotoxicity induced by URE in mice, as well as in somatic cells of D. melanogaster. We suggest that the modulatory effects of BA may be mainly due to its antioxidant and apoptotic properties.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Triterpenos/farmacologia , Uretana/toxicidade , Animais , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Medula Óssea/efeitos dos fármacos , Carcinógenos/farmacologia , Drosophila melanogaster/genética , Feminino , Cabelo/efeitos dos fármacos , Masculino , Camundongos , Testes de Mutagenicidade , Triterpenos Pentacíclicos , Taxa de Sobrevida , Tricomas/efeitos dos fármacos , Triterpenos/química , Asas de Animais/efeitos dos fármacos , Ácido Betulínico
3.
Environ Mol Mutagen ; 61(3): 329-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489703

RESUMO

Medicinal plants are worldwide used as an efficient treatment of many diseases. Myracrodruon urundeuva Allemão (Anacardiaceae) is widely used Brazilian folk medicine to treat inflammations and infections of the female genital tract, conditions of the stomach and throat, and to heal wounds on the skin and mucous membranes. Several pharmacological properties of extracts and compounds isolated from M. urundeuva are found in the literature, corroborating its uses as antiulcer and gastroprotective, anti-inflammatory and analgesic, as well as antimicrobial. Despite these many uses in traditional herbal medicine, there are few reports of its toxic-genetic effect. This work aimed to investigate the genotoxic and mutagenic potential in vivo of the dry decoction of M. urundeuva leaves on somatic cells of Drosophila melanogaster, through the Comet assay and somatic mutation and recombination test (SMART). Six concentrations (0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 mg/mL) were studied after feeding individuals for 24 hr in culture medium hydrated with extracts of M. urundeuva. In the Comet assay, all concentrations showed a genotoxic effect significantly higher than the negative control group, treated with distilled water. The two highest concentrations were also superior to the positive control group, treated with cyclophosphamide (1 mg/mL). In the SMART, there was a mutagenic effect at all concentrations tested, with a clear dose-dependent relationship. Both recombination and mutation account for these mutagenic effects. The set of results indicate that the dry decoction of M. urundeuva leaves is genotoxic and mutagenic for D. melanogaster under the experimental conditions of this study. Environ. Mol. Mutagen. 61:329-337, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Anacardiaceae/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Anti-Inflamatórios/toxicidade , Brasil , Ensaio Cometa , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Medicina Tradicional , Mutação/efeitos dos fármacos , Folhas de Planta/toxicidade
4.
Food Chem Toxicol ; 131: 110557, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176925

RESUMO

The aim of the present study was to appraise the mutagenic and recombinogenic potential of bupropion hydrochloride (BHc) and trazodone hydrochloride (THc). We used standard (ST) and the high bioactivation (HB) crossings from Drosophila melanogaster in the Somatic Mutation and Recombination Test. We treated third-instar larvae from both crossings with different concentrations of BHc and THc (0.9375 to 7.5 mg/mL). BHc significantly increased the frequency of mutant spots in both crossings, except for the lowest concentration in the ST crossing. ST had also the mostly recombinogenic result, and in the HB, BHc was highly mutagenic. On the other hand, THc significantly increased the frequency of mutant spots in both the ST and HB crossings at all concentrations. The three initial concentrations were recombinogenic and the highest concentration was mutagenic for the THc. BHc and THc at high concentrations were toxic, even though their mutagenicity was not dose-related. THc significantly increased the frequency of mutant spots when metabolized, probably as a result of the production of 1-(3'-chlorophenyl) piperazine. BHc was essentially recombinogenic and when metabolized, it became mutagenic. THc was recombinogenic in both crossings. Further studies are needed to clarify the action mechanisms from BHc and THc.


Assuntos
Antidepressivos/toxicidade , Bupropiona/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Trazodona/toxicidade , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Mutação , Asas de Animais/efeitos dos fármacos
5.
Food Chem Toxicol ; 112: 273-281, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29292020

RESUMO

Nanoparticles have been widely used in several sectors and their long-term effect on the body and environment remains unknown. To evaluate the mutagenic, recombinogenic and carcinogenic potential of 11 nm titanium dioxide nanocrystals (TiO2 NCs), the Somatic Mutation and Recombination Test (SMART) and the Test for Detection of Epithelial Tumors Clones (Warts-Wts) were used, both in Drosophila melanogaster. Third-instar larvae (72 + 4 h), obtained in both tests, were treated with different concentrations of TiO2 NCs ranging from 6.25 to 100 mM. Ultrapure water and urethane were used as negative and positive controls, respectively. At ST cross, all concentrations of TiO2 NCs showed a significant increase in the frequencies of mutant spots, demonstrating higher recombination rates. At the HB cross, only the 50 mM concentration showed a negative result. In the Wts Test, all used concentrations were carcinogenic, except for the 100 mM one, which was toxic. No relationship was demonstrated between the used concentrations and the obtained responses. There was no interference of the cytochrome P450 enzyme complex in the induction of mutant spots.


Assuntos
Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Drosophila melanogaster/genética , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
6.
Food Chem Toxicol ; 106(Pt A): 283-291, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28571774

RESUMO

Metformin (MET) is an anti-diabetic drug used to prevent hepatic glucose release and increase tissue insulin sensitivity. Diabetic cancer patients are on additional therapy with anticancer drugs. Doxorubicin (DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. MET (2.5, 5, 10, 25 or 50 mM) alone was examined for mutagenicity, recombinogenicity and carcinogenicity, and combined with DXR (0.4 mM) for antimutagenicity, antirecombinogenicity and anticarcinogenicity, using the Somatic Mutation and Recombination Test and the Test for Detecting Epithelial Tumor Clones in Drosophila melanogaster. MET alone did not induce mutation or recombination. Modulating effects of MET on DXR-induced DNA damage were observed at the highest concentrations. In the evaluation of carcinogenesis, MET alone did not induce tumors. When combined with DXR, MET also reduced the DXR-induced tumors at the highest concentrations. Therefore, in the present experimental conditions, MET alone did not present mutagenic/recombinogenic/carcinogenic effects, but it was able to modulate the effect of DXR in the induction of DNA damage and of tumors in D. melanogaster. It is believed that this modulating effect is mainly related to the antioxidant, anti-inflammatory and apoptotic effects of this drug, although such effects have not been directly evaluated.


Assuntos
Doxorrubicina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Metformina/farmacologia , Mutagênicos/toxicidade , Animais , Carcinogênese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Metformina/administração & dosagem , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Recombinação Genética/efeitos dos fármacos
7.
Chemosphere ; 165: 342-351, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664524

RESUMO

Fipronil (FP) is an insecticide that belongs to the phenylpyrazole chemical family and is used to control pests by blocking GABA receptor at the entrance channel of the chlorine neurons. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of FP. The mutagenic and recombinogenic effects were evaluated using the somatic mutation and recombination test (SMART) on wing cells of Drosophila melanogaster. Third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). The results showed mutagenic effects at all concentrations tested in the HB cross; and all concentrations tested in the ST cross, except at concentration of 0.7 × 10-5 mM. The carcinogenic effect of FP was assayed through the test for detection of epithelial tumor (warts) in D. melanogaster. Third instar larvae from wts/TM3 virgin females mated to mwh/mwh males were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). All these concentrations induced a statistically significant increase in tumor frequency. In conclusion, FP proved to be mutagenic, recombinogenic and carcinogenic in somatic cells of D. melanogaster.


Assuntos
Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/toxicidade , Testes de Mutagenicidade/métodos , Neoplasias/induzido quimicamente , Pirazóis/toxicidade , Asas de Animais/patologia , Animais , Feminino , Larva/efeitos dos fármacos , Masculino , Mutagênese , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
8.
Food Chem Toxicol ; 96: 226-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27497765

RESUMO

The main of this study was to evaluate the mutagenic and carcinogenic potential of (+) - usnic acid (UA), using Somatic Mutation and Recombination Test (SMART) and the test for detecting epithelial tumor clones (wts) in Drosophila melanogaster. Larvae from 72 ± 4 h from Drosophila were fed with UA (5.0, 10.0 or 20.0 mM); urethane (10.0 mM) (positive control); and solvent (Milli-Q water, 1% Tween-80 and 3% ethanol) (negative control). ST cross produced increase in total mutant spots in the individuals treated with 5.0, 10.0 or 20.0 mM of UA. HB cross produced spot frequencies in the concentration of 5.0 mM that were higher than the frequency for the same concentration in the ST cross. In the highest concentrations the result was negative, which means that the difference observed can be attributed, in part, to the high levels of P450, suggesting that increasing the metabolic capacity maximized the toxic effect of these doses. In the evaluation of carcinogenesis using the wts test, the results obtained for the same concentrations of UA show a positive result for the presence of tumors when compared to the negative control. We conclude that UA has recombinogenic, mutagenic and carcinogenic effects on somatic cells in D. melanogaster.


Assuntos
Anti-Infecciosos/toxicidade , Benzofuranos/toxicidade , Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Drosophila melanogaster/genética , Larva/genética , Mutagênese/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos , Asas de Animais/metabolismo
9.
Food Chem Toxicol ; 62: 521-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24071477

RESUMO

Terminalia actinophylla has been used for anti-diarrheic and haemostatic purposes in Brazil. The fly spot data obtained after exposure of marker-heterozygous Drosophila melanogaster larvae to T. actinophylla ethanolic extract (TAE) in the standard (ST) and high bioactivation (HB) crosses revealed that TAE did not induce any statistically significant increment in any spot categories. Differences between the two crosses are related to cytochrome P450 (CYPs) levels. In this sense, our data pointed out the absence of TAE-direct and indirect mutagenic and recombinagenic action in the Somatic Mutation and Recombination Test (SMART). When the anti-genotoxicity of TAE was analyzed, neither mitomycin C (MMC) nor ethylmethanesulfonate (EMS) genotoxicity was modified by the post-exposure to TAE, which suggests that TAE has no effect on the mechanisms involved in the processing of the lesions induced by both genotoxins. In the mwh/flr(3) genotype, co-treatment with TAE may lead to a significant protection against the genotoxicity of MMC and a weak but significant effect in the toxic genetic action of EMS. The overall findings suggested that the favorable modulations by TAE could be, at least in part, due to its antioxidative potential.


Assuntos
Antimutagênicos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Extratos Vegetais/farmacologia , Terminalia/química , Animais , Brasil , Cruzamentos Genéticos , Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster/genética , Etanol , Feminino , Larva/efeitos dos fármacos , Larva/genética , Masculino , Mitomicina/toxicidade , Asas de Animais/efeitos dos fármacos
10.
Food Chem Toxicol ; 62: 355-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23994091

RESUMO

Carbon nanotubes (CNTs) are formed by rolling up a single graphite sheet into a tube. Among the different types of CNTs, the multi-walled carbon nanotubes (MWCNTs) comprise a set of concentric nanotubes with perfect structures. Several uses for MWCNTs have been suggested to be included in biological applications such as manufacturing of biosensors, carriers of drugs. However, before these materials can be put on the market, it is necessary to know their genotoxic effects. Thus, this study aims to evaluate the mutagenicity of multi-walled carbon nanotubes (MWCNTs) functionalized in somatic cells of Drosophila melanogaster, using the somatic mutation and recombination test (SMART). This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the wings of the fly. Larvae of three days were used, resulting from ST cross, with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross). They were treated with different concentrations of MWCNTs functionalized. The MH descendants, analyzed in both ST and HB crosses, had no significant effects on the frequency of mutant. Based on the results and on the experimental conditions mentioned in this study, it was concluded that MWCNTs were not mutagenic in D. melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Feminino , Larva/efeitos dos fármacos , Masculino , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Mutação , Recombinação Genética , Taxa de Sobrevida , Asas de Animais/citologia , Asas de Animais/efeitos dos fármacos
11.
Food Chem Toxicol ; 62: 61-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973191

RESUMO

In vitro chemical properties and antioxidant potential and in vivo mutagenic activity of honey-sweetened cashew apple nectar (HSCAN), a beverage produced from the cashew pseudo-fruit (Anacardium occidentale L.) and of its constituents were assessed. Analytical procedures were carried out to investigate the honey used in the HSCAN preparation, and the results observed are in accordance with Brazilian legal regulations, except for diastase number. HSCAN and pulp were investigated for ascorbic acid, carotenoid, anthocyanin and total phenolic contents, and both showed high acid ascorbic concentrations. Antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and/or ß-carotene/linoleic acid systems were applied and demonstrated a weak antioxidant capacity of honey and HSCAN, but cashew apple pulp demonstrated high antioxidant capacity. A weakly positive mutagenic effect of cashew pulp 20% was observed using the somatic mutation and recombination test (SMART) in Drosophila melanogaster only in the high-bioactivation (HB) cross. On the contrary, HSCAN was not mutagenic in both standard and high bioactivation crosses. HSCAN exhibited slight antioxidant activity, which could be associated with the high amount of ascorbic acid found in the samples evaluated. The beverage prepared did not induce DNA damage in somatic cells of D. melanogaster, which means that it is neither mutagenic nor recombinagenic in this test system.


Assuntos
Anacardium/química , Antioxidantes/farmacologia , Bebidas/análise , Mel , Mutagênicos/toxicidade , Néctar de Plantas/farmacologia , Animais , Antioxidantes/análise , Ácido Ascórbico/análise , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Fenóis/análise , Néctar de Plantas/química , Recombinação Genética , Edulcorantes/farmacologia
12.
Genet Mol Biol ; 32(2): 382-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21637695

RESUMO

The wing Somatic Mutation and Recombination Test (SMART) in D. melanogaster was used to study genotoxicity of the medicinal plant Tabebuia impetiginosa. Lapachol (naphthoquinone) and ß-lapachone (quinone) are the two main chemical constituents of T. impetiginosa. These compounds have several biological properties. They induce apoptosis by generating oxygen-reactive species, thereby inhibiting topoisomerases (I and II) or inducing other enzymes dependent on NAD(P)H:quinone oxidoreductase 1, thus affecting cell cycle checkpoints. The SMART was used in the standard (ST) version, which has normal levels of cytochrome P450 (CYP) enzymes, to check the direct action of this compound, and in the high bioactivation (HB) version, which has a high constitutive level of CYP enzymes, to check for indirect action in three different T. impetiginosa concentrations (10%, 20% or 40% w/w). It was observed that T. impetiginosa alone did not modify the spontaneous frequencies of mutant spots in either cross. The negative results observed prompted us to study this phytotherapeuticum in association with the reference mutagen doxorubicin (DXR). In co-treated series, T. impetiginosa was toxic in both crosses at higher concentration, whereas in the HB cross, it induced a considerable potentiating effect (from ~24.0 to ~95.0%) on DXR genotoxity. Therefore, further research is needed to determine the possible risks associated with the exposure of living organisms to this complex mixture.

13.
Genet. mol. biol ; Genet. mol. biol;32(2): 382-388, 2009. tab
Artigo em Inglês | LILACS | ID: lil-513961

RESUMO

The wing Somatic Mutation and Recombination Test (SMART) in D. melanogaster was used to study genotoxicity of the medicinal plant Tabebuia impetiginosa. Lapachol (naphthoquinone) and β-lapachone (quinone) are the two main chemical constituents of T. impetiginosa. These compounds have several biological properties. They induce apoptosis by generating oxygen-reactive species, thereby inhibiting topoisomerases (I and II) or inducing other enzymes dependent on NAD(P)H:quinone oxidoreductase 1, thus affecting cell cycle checkpoints. The SMART was used in the standard (ST) version, which has normal levels of cytochrome P450 (CYP) enzymes, to check the direct action of this compound, and in the high bioactivation (HB) version, which has a high constitutive level of CYP enzymes, to check for indirect action in three different T. impetiginosa concentrations (10 percent, 20 percent or 40 percent w/w). It was observed that T. impetiginosa alone did not modify the spontaneous frequencies of mutant spots in either cross. The negative results observed prompted us to study this phytotherapeuticum in association with the reference mutagen doxorubicin (DXR). In co-treated series, T. impetiginosa was toxic in both crosses at higher concentration, whereas in the HB cross, it induced a considerable potentiating effect (from ~24.0 to ~95.0 percent) on DXR genotoxity. Therefore, further research is needed to determine the possible risks associated with the exposure of living organisms to this complex mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA