Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278862

RESUMO

A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema/genética , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Treonina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética , Proliferação de Células/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Mol Biol ; 108(1-2): 93-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34982361

RESUMO

KEY MESSAGE: Proper root growth depends on the clearance of TCP transcripts from the root apical meristem by microRNA miR319. The evolutionarily conserved microRNA miR319 regulates genes encoding TCP transcription factors in angiosperms. The miR319-TCP module controls cell proliferation and differentiation in leaves and other aerial organs. The current model sustains that miR319 quantitatively tunes TCP activity during leaf growth and development, ultimately affecting its size. In this work we studied how this module participates in Arabidopsis root development. We found that misregulation of TCP activity through impairment of miR319 binding decreased root meristem size and root length. Cellular and molecular analyses revealed that high TCP activity affects cell number and cyclin expression but not mature cell length, indicating that, in roots, unchecking the expression of miR319-regulated TCPs significantly affects cell proliferation. Conversely, tcp multiple mutants showed no obvious effect on root growth, but strong defects in leaf morphogenesis. Therefore, in contrast to the quantitative regulation of the TCPs by miR319 in leaves, our data suggest that miR319 clears TCP transcripts from root cells. Hence, we provide new insights into the functions of the miR319-TCP regulatory system in Arabidopsis development, highlighting a different modus operandi for its action mechanism in roots and shoots.


Assuntos
Proteínas de Arabidopsis/fisiologia , MicroRNAs/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , MicroRNAs/metabolismo , Microscopia Confocal , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Front Cell Dev Biol ; 9: 672545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557481

RESUMO

In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.

4.
J Exp Bot ; 72(19): 6673-6678, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34562009

RESUMO

This special issue is dedicated to the 100th anniversary of the birth of Frederick Albert Lionel Clowes, who discovered the quiescent centre (QC) of the root apical meristem (RAM). His discovery was a foundation for contemporary studies of the QC and RAM function, maintenance, and organization. RAM function is fundamental for cell production and root growth. This special issue bundles reviews on the main tendencies, hypotheses, and future directions, and identifies unknowns in the field.


Assuntos
Proteínas de Arabidopsis , Meristema , Proteínas de Arabidopsis/genética , Divisão Celular , Raízes de Plantas
5.
J Exp Bot ; 72(19): 6687-6707, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34161558

RESUMO

In this review we discuss the concepts of the quiescent centre (QC) of the root apical meristem (RAM) and their change over time, from their formulation by F.A.L. Clowes to the present. This review is dedicated to the 100th anniversary of the birth of Clowes, and we present his short biography and a full bibliography of Clowes' work. Over time, the concept of the QC proved to be useful for the understanding of RAM organization and behaviour. We focus specifically on conceptual developments, from the organization of the QC to understanding its functions in RAM maintenance and activity, ranging from a model species, Arabidopsis thaliana, to crops. Concepts of initial cells, stem cells, and heterogeneity of the QC cells in the context of functional and structural stem cells are considered. We review the role of the QC in the context of cell flux in the RAM and the nature of quiescence of the QC cells. We discuss the origin of the QC and fluctuation of its size in ontogenesis and why the QC cells are more resistant to stress. Contemporary concepts of the organizer and stem cell niche are also considered. We also propose how the stem cell niche in the RAM can be defined in roots of a non-model species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Divisão Celular , Meristema , Raízes de Plantas , Nicho de Células-Tronco
6.
Front Plant Sci ; 12: 659155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981325

RESUMO

The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.

7.
New Phytol ; 225(3): 1261-1272, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31545512

RESUMO

During plant development, morphogenetic processes rely on the activity of meristems. Meristem homeostasis depends on a complex regulatory network constituted by different factors and hormone signaling that regulate gene expression to coordinate the correct balance between cell proliferation and differentiation. ULTRAPETALA1, a transcriptional regulatory protein described as an Arabidopsis Trithorax group factor, has been characterized as a regulator of the shoot and floral meristems activity. Here, we highlight the role of ULTRAPETALA1 in root stem cell niche maintenance. We found that ULTRAPETALA1 is required to regulate both the quiescent center cell division rate and auxin signaling at the root tip. Furthermore, ULTRAPETALA1 regulates columella stem cell differentiation. These roles are independent of the ARABIDOPSIS TRITHORAX1, suggesting a different mechanism by which ULTRAPETALA1 can act in the root apical meristem of Arabidopsis. This work introduces a new component of the regulatory network needed for the root stem cell niche maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/genética , Raízes de Plantas/genética , Transdução de Sinais , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética
8.
J Exp Bot ; 70(15): 3835-3849, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972413

RESUMO

Indeterminate root growth depends on the stem cell niche (SCN) and root apical meristem (RAM) maintenance whose regulation permits plasticity in root system formation. Using a forward genetics approach, we isolated the moots koom1 ('short root' in Mayan) mutant that shows complete primary RAM exhaustion and abolished SCN activity. We identified that this phenotype is caused by a point mutation in the METHIONINE OVERACCUMULATOR2 (MTO2) gene that encodes THREONINE SYNTHASE1 and renamed the mutant as mto2-2. The amino acid profile showed drastic changes, most notorious of which was accumulation of methionine. In non-allelic mto1-1 (Arabidopsis thaliana cystathionine gamma-synthetase1) and mto3-1 (S-adenosylmethionine synthetase) mutants, both with an increased methionine level, the RAM size was similar to that of the wild type, suggesting that methionine overaccumulation itself did not cause RAM exhaustion in mto2 mutants. When mto2-2 RAM is not yet completely exhausted, exogenous threonine induced de novo SCN establishment and root growth recovery. The threonine-dependent RAM re-establishment in mto2-2 suggests that threonine is a limiting factor for RAM maintenance. In the root, MTO2 was predominantly expressed in the RAM. The essential role of threonine in mouse embryonic stem cells and in RAM maintenance suggests that common regulatory mechanisms may operate in plant and animal SCN maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Meristema/metabolismo , Nicho de Células-Tronco/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Sementes/citologia , Sementes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Ann Bot ; 118(4): 763-776, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27358290

RESUMO

Background and Aims The Arabidopsis thaliana root is a key experimental system in developmental biology. Despite its importance, we are still lacking an objective and broadly applicable approach for identification of number and position of developmental domains or zones along the longitudinal axis of the root apex or boundaries between them, which is essential for understanding the mechanisms underlying cell proliferation, elongation and differentiation dynamics during root development. Methods We used a statistics approach, the multiple structural change algorithm (MSC), for estimating the number and position of developmental transitions in the growing portion of the root apex. Once the positions of the transitions between domains and zones were determined, linear models were used to estimate the critical size of dividing cells (LcritD) and other parameters. Key Results The MSC approach enabled identification of three discrete regions in the growing parts of the root that correspond to the proliferation domain (PD), the transition domain (TD) and the elongation zone (EZ). Simultaneous application of the MSC approach and G2-to-M transition (CycB1;1DB:GFP) and endoreduplication (pCCS52A1:GUS) molecular markers confirmed the presence and position of the TD. We also found that the MADS-box gene XAANTAL1 (XAL1) is required for the wild-type (wt) PD increase in length during the first 2 weeks of growth. Contrary to wt, in the xal1 loss-of-function mutant the increase and acceleration of root growth were not detected. We also found alterations in LcritD in xal1 compared with wt, which was associated with longer cell cycle duration in the mutant. Conclusions The MSC approach is a useful, objective and versatile tool for identification of the PD, TD and EZ and boundaries between them in the root apices and can be used for the phenotyping of different genetic backgrounds, experimental treatments or developmental changes within a genotype. The tool is publicly available at www.ibiologia.com.mx/MSC_analysis.

10.
New Phytol ; 202(4): 1223-1236, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24635769

RESUMO

Roots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated. We isolated a moots koom2 (mko2; 'short root' in Mayan) Arabidopsis thaliana mutant with determinate primary root growth and analyzed the root apical meristem (RAM) behavior using various marker lines. Deep sequencing and genetic and pharmacological complementation permitted the identification of a point mutation in the FOLYLPOLYGLUTAMATE SYNTHETASE1 (FPGS1) gene responsible for the mko2 phenotype. Wild-type FPGS1 is required to maintain the IDS in the 'off' state. When FPGS1 function is compromised, the IDS is turned on and the RAM becomes completely consumed. The polyglutamate-dependent pathway of the IDS involves activation of the quiescent center independently of auxin gradients and regulatory modules participating in RAM maintenance (WUSCHEL-RELATED HOMEOBOX5 (WOX5), PLETHORA, and SCARECROW (SCR)). The mko2 mutation causes drastic changes in folate metabolism and also affects lateral root primordium morphogenesis but not initiation. We identified a metabolism-dependent pathway involved in the IDS in roots. We suggest that the root IDS represents a specific developmental pathway that regulates RAM behaviour and is a different level of regulation in addition to RAM maintenance.


Assuntos
Arabidopsis/genética , Ácido Fólico/metabolismo , Peptídeo Sintases/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Meristema/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Peptídeo Sintases/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Mutação Puntual , Transdução de Sinais , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA