Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11636, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773193

RESUMO

DNA is a complex multi-resolution molecule whose theoretical study is a challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as a perfect quantum computer. Here, we present theoretical results of DNA that allow a better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form a supercurrent in the nitrogenous bases in a single band π -molecular orbital ( π -MO). The MO wave function ( Φ ) is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of a Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is a perfect quantum computer.

2.
Entropy (Basel) ; 22(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33285931

RESUMO

In this work, we discuss the failure of the principle of truth functionality in the quantum formalism. By exploiting this failure, we import the formalism of N-matrix theory and non-deterministic semantics to the foundations of quantum mechanics. This is done by describing quantum states as particular valuations associated with infinite non-deterministic truth tables. This allows us to introduce a natural interpretation of quantum states in terms of a non-deterministic semantics. We also provide a similar construction for arbitrary probabilistic theories based in orthomodular lattices, allowing to study post-quantum models using logical techniques.

3.
Entropy (Basel) ; 21(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-33267483

RESUMO

A measure D [ t 1 , t 2 ] for the amount of dynamical evolution exhibited by a quantum system during a time interval [ t 1 , t 2 ] is defined in terms of how distinguishable from each other are, on average, the states of the system at different times. We investigate some properties of the measure D showing that, for increasing values of the interval's duration, the measure quickly reaches an asymptotic value given by the linear entropy of the energy distribution associated with the system's (pure) quantum state. This leads to the formulation of an entropic variational problem characterizing the quantum states that exhibit the largest amount of dynamical evolution under energy constraints given by the expectation value of the energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA