RESUMO
Animal waste is a potential pollution hazard as it can harbour contaminants, such as antimicrobial residues, mycotoxins, and pesticides, becoming a risk to the public, animal, and environmental health. To assess this risk, 15 experimental broiler chickens orally received contaminants to evaluate excretion levels. An analytical method was previously developed to detect 18 substances in poultry droppings using high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Contaminants including tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, chlortetracycline, 4-epi-chlortetracycline, tylosin, erythromycin, enrofloxacin, ciprofloxacin, flumequine, florfenicol, sulfachloropyridazine, sulfadiazine, 2,4-dichlorophenoxyacetic acid, zearalenone, alpha- and beta-zearalenol, were extracted with EDTA-McIlvain and acetonitrile. This method showed a p-value < 0.05, RSD < 25%, and R2 > 0.95 in the calibration curves linearity for all analytes. The limit of quantification, selectivity, decision limit for confirmation, matrix effect, precision, and recovery parameters were validated according to European Union document 2021/808/EC, technical report CEN/TR 16059, SANTE/11813/2017 and according to the Veterinary International Conference on Harmonization: VICH GL2 and GL49. This method confirmed the detection of most analytes 12-36 h post-administration and simultaneously detected and quantified mixed contaminants. Thereby, poultry droppings are a potential matrix for spreading contaminants in animal production before slaughter and their control will minimize environmental impacts and mitigate antimicrobial resistance.
RESUMO
Oxytetracycline (OTC) is widely used in broiler chickens. During and after treatment a fraction of OTC is excreted in its original form and as its epimer, 4-epi-OTC in droppings. To address the transfer of OTC into the environment, we evaluated the dissemination of OTC and 4-epi-OTC from treated birds to the environment and sentinels, through the simultaneous analysis of broiler droppings and litter. Male broiler chickens were bred in controlled conditions. One group was treated by orogastric tube with 80 mg kg-1 of OTC and two groups received no treatment (sentinels). OTC+4-epi-OTC were analyzed and detected by a HPLC-MS/MS post the end of treatment. The highest concentrations of OTC+4-epi-OTC were detected in the droppings of treated birds 14-days following the end of treatment (2244.66 µg kg-1), and one day following the end of treatment in the litter (22,741.68 µg kg-1). Traces of OTC+4-epi-OTC were detected in the sentinels' droppings and litter (<12.2 µg kg-1). OTC+4-epi-OTC can be transferred from treated birds to the environment and to other untreated birds. The presence and persistence of OTC+4-epi-OTC in litter could contribute to the selection of resistant bacteria in the environment, increasing the potential hazard to public and animal health.
RESUMO
Tetracyclines are important antimicrobial drugs for poultry farming that are actively excreted via feces and urine. Droppings are one of the main components in broiler bedding, which is commonly used as an organic fertilizer. Therefore, bedding becomes an unintended carrier of antimicrobial residues into the environment and may pose a highly significant threat to public health. For this depletion study, 60 broiler chickens were treated with 20% chlortetracycline (CTC) under therapeutic conditions. Concentrations of CTC and 4-epi-CTC were then determined in their droppings. Additionally, this work also aimed to detect the antimicrobial activity of these droppings and the phenotypic susceptibility to tetracycline in E. coli isolates, as well as the presence of tet(A), tet(B), and tet(G) resistance genes. CTC and 4-epi-CTC concentrations that were found ranged from 179.5 to 665.8 µg/kg. Based on these data, the depletion time for chicken droppings was calculated and set at 69 days. All samples presented antimicrobial activity, and a resistance to tetracyclines was found in bacterial strains that were isolated from these samples. Resistance genes tet(A) and tet(B) were also found in these samples.