RESUMO
Los postbióticos fueron definidos en 2021 por la Asociación Científica Internacional de Probióticos y Prebióticos (ISAPP) como "una preparación de microorganismos inanimados y/o sus componentes celulares capaces de conferir un efecto benéfico al hospedador". El campo de los postbióticos es un área nueva dentro de la familia de los bióticos; se han desarrollado ya numerosos productos con aplicaciones clínicas, como la estimulación inmunológica, el manejo de diarreas en niños y adultos, el abordaje del intestino irritable, además de tres fórmulas infantiles. En particular, las fórmulas infantiles con postbióticos obtenidos a partir de la fermentación de la leche con Bifidobacterium breve C50 y Streptococcus thermophilus O65, y sus metabolitos, incluido el oligosacárido 3'-GL, han demostrado seguridad y contribución al desarrollo de la microbiota intestinal y el sistema inmune asociado al intestino. Estas modificaciones contribuyen a la prevención y el manejo de los trastornos funcionales digestivos del lactante.
Postbiotics were defined in 2021 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) as a "preparation of inanimate microorganisms and/or their cellular components that confers a health benefit to the host." The field of postbiotics is a new area within the biotics family; numerous products have already been developed for clinical applications, such as immune stimulation, the management of diarrhea in children and adults, the management of irritable bowel syndrome, and 3 infant formulas. In particular, infant formulas with postbiotics obtained from milk fermented with Bifidobacterium breve C50 and Streptococcus thermophilus O65 and their metabolites, including the oligosaccharide 3'-GL, have demonstrated to be safe and to contribute to the development of the gut microbiota and the gutassociated immune system. These modifications help to prevent and manage functional gastrointestinal disorders in infants.
Assuntos
Humanos , Lactente , Probióticos , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/terapia , Fórmulas Infantis , Streptococcus thermophilus , Diarreia/microbiologia , Diarreia/terapia , Prebióticos/administração & dosagem , Microbioma Gastrointestinal , Bifidobacterium breve , Gastroenteropatias/microbiologia , Gastroenteropatias/terapiaRESUMO
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Assuntos
Candida , Microbioma Gastrointestinal , Obesidade , Obesidade/microbiologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Probióticos/farmacologia , Candida albicans/efeitos dos fármacos , Modelos Biológicos , Antifúngicos/farmacologiaRESUMO
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
RESUMO
Abstract The last decade provided significant advances in the understanding of microbiota and its role in human health. Probiotics are live microorganisms with proven benefits for the host and were mostly studied in the context of gut health, but they can also confer significant benefits for oral health, mainly in the treatment of gingivitis. Postbiotics are cell-free extracts and metabolites of microorganisms which can provide additional preventive and therapeutic value for human health. This opens opportunities for new preventive or therapeutic formulations for oral administration. The microorganisms that colonize the oral cavity, their role in oral health and disease, as well as the probiotics and postbiotics which could have beneficial effects in this complex environment were discussed. The aim of this study was to review, analyse and discuss novel probiotic and postbiotic formulations intended for oral administration that could be of great preventive and therapeutic importance. A special attention has been put on the formulation of the pharmaceutical dosage forms that are expected to provide new benefits for the patients and technological advantages relevant for industry. An adequate dosage form could significantly enhance the efficiency of these products.
Assuntos
Saúde Bucal/classificação , Probióticos/análise , Microbiota/imunologia , Preparações Farmacêuticas/administração & dosagem , Ligilactobacillus salivarius/classificação , Boca/lesõesRESUMO
Postbiotics were defined in 2021 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) as a "preparation of inanimate microorganisms and/or their cellular components that confers a health benefit to the host." The field of postbiotics is a new area within the biotics family; numerous products have already been developed for clinical applications, such as immune stimulation, the management of diarrhea in children and adults, the management of irritable bowel syndrome, and 3 infant formulas. In particular, infant formulas with postbiotics obtained from milk fermented with Bifidobacterium breve C50 and Streptococcus thermophilus O65 -and their metabolites-, including the oligosaccharide 3'-GL, have demonstrated to be safe and to contribute to the development of the gut microbiota and the gutassociated immune system. These modifications help to prevent and manage functional gastrointestinal disorders in infants.
Los postbióticos fueron definidos en 2021 por la Asociación Científica Internacional de Probióticos y Prebióticos (ISAPP) como "una preparación de microorganismos inanimados y/o sus componentes celulares capaces de conferir un efecto benéfico al hospedador". El campo de los postbióticos es un área nueva dentro de la familia de los bióticos; se han desarrollado ya numerosos productos con aplicaciones clínicas, como la estimulación inmunológica, el manejo de diarreas en niños y adultos, el abordaje del intestino irritable, además de tres fórmulas infantiles. En particular, las fórmulas infantiles con postbióticos obtenidos a partir de la fermentación de la leche con Bifidobacterium breve C50 y Streptococcus thermophilus O65, y sus metabolitos, incluido el oligosacárido 3'-GL, han demostrado seguridad y contribución al desarrollo de la microbiota intestinal y el sistema inmune asociado al intestino. Estas modificaciones contribuyen a la prevención y el manejo de los trastornos funcionales digestivos del lactante.
RESUMO
Diverse terms have been used in the literature to refer to the health benefits obtained from the administration of non-viable microorganisms or their cell fragments and metabolites. In an effort to provide continuity to this emerging field, the International Scientific Association of Probiotics and Prebiotics (ISAPP) convened a panel of experts to consider this category of substances and adopted the term postbiotic, which they defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." This definition does not stipulate any specific health benefit, finished product, target population or regulatory status. In this perspective article, we focused on postbiotics developed for pharmaceutical uses, including medicinal products and medical devices. We address how this field is regulated for products based on inanimate microorganisms, marketing considerations and existing examples of postbiotics products developed as cosmetics for the skin, for vaginal health, and as orally consumed products. We focus on the European Union for regulatory aspects, but also give examples from other geographical areas.
RESUMO
El consumo de probióticos, prebióticos y posbióticos, o su combinación, puede contribuir a mantener una microbiota intestinal saludable ya que permite la regulación de su disbiosis en el caso de algunas enfermedades o trastornos, principalmente en los trastornos gastrointestinales funcionales (TGIF). El microbioma intestinal es protagonista esencial en la fisiopatología de los TGIF a través de sus funciones metabólicas y nutricionales, el mantenimiento de la integridad de la mucosa intestinal y la regulación de la respuesta inmunitaria. Las investigaciones realizadas hasta la fecha indican que los probióticos, prebióticos y posbióticos pueden tener efectos inmunomoduladores directos y clínicamente relevantes. Existen pruebas del uso de esta familia de bióticos en individuos sanos para mejorar la salud general y aliviar los síntomas en una serie de enfermedades como los cólicos infantiles. La colonización y establecimiento de la microbiota comienza en el momento del nacimiento; los primeros 2-3 años de vida son fundamentales para el desarrollo de una comunidad microbiana abundante y diversa. Diversos estudios científicos realizados mediante técnicas tradicionales dependientes de cultivo y más recientemente por técnicas moleculares han observado diferencias en las poblaciones bacterianas de bebés sanos y aquellos que sufren TGIF, estos últimos caracterizados por un aumento de especies patógenas y una menor población de bifidobacterias y lactobacilos, en comparación con los primeros. En tal contexto, se considera que la microbiota intestinal como protagonista en el desarrollo de esos trastornos, entre ellos los cólicos infantiles, a través de sus funciones metabólicas, nutricionales, de mantenimiento de la integridad de la mucosa intestinal y regulación de la respuesta inmunitaria. Esto ha abierto la puerta al estudio de la utilización de prebióticos, probióticos y posbióticos en el tratamiento y/o prevención de los TGIF infantiles. El parto vaginal y de término así como la lactancia son fundamentales en la constitución de una microbiota saludable. Como herramientas de apoyo, existen estudios de eficacia que sustentan la administración de esta familia de bióticos, principalmente en los casos en que la lactancia no sea posible o esté limitada. (AU)
The consumption of probiotics, prebiotics, and postbiotics, or a combination of them, can contribute to maintaining a healthy intestinal microbiota as it allows the regulation of its dysbiosis in the case of some diseases or disorders, mainly in functional gastrointestinal disorders (FGIDs). The gut microbiome is an essential player in the pathophysiology of FGIDs through its metabolic and nutritional functions, the maintenance of intestinal mucosal integrity, and the regulation of the immune response. Research results thus far indicate that probiotics, prebiotics, and postbiotics may have direct and clinically relevant immunomodulatory effects. There is evidence regarding the prescription of this family of biotics in healthy individuals to improve overall health and alleviate symptoms in many conditions like infantile colic. The colonization and microbiota establishment begins at birth; the first 2-3 years of life are critical for developing an abundant and diverse microbial community. Several scientific studies performed by traditional culture-dependent techniques and more recently by molecular techniques have observed differences in the bacterial populations of healthy infants and those suffering from FGIDs, the latter characterized by an increase in pathogenic species and a lower population of bifidobacteria and lactobacilli, compared to the former. In this context, the intestinal microbiota plays a leading role in the onset of these disorders, including infantile colic, through its metabolic and nutritional functions, maintenance of the integrity of the intestinal mucosa, and regulation of the immune response. That has opened the door to the study of prebiotics, probiotics, and postbiotics usage in the treatment and or prevention of infantile FGIDs. Vaginal and term delivery and breastfeeding are fundamental in the constitution of a healthy microbiota. As supportive tools, there are efficacy studies that support the administration of this family of biotics, mainly in cases where lactation is not possible or is limited.
Assuntos
Humanos , Cólica/microbiologia , Probióticos , Prebióticos , Simbióticos , Microbioma Gastrointestinal , Gastroenteropatias/microbiologia , Lactação , Cólica/dietoterapia , Cólica/fisiopatologia , Cólica/prevenção & controle , Alimento Funcional , Gastroenteropatias/dietoterapia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/prevenção & controleRESUMO
This study aimed to evaluate the potential of lactic acid bacteria (LAB) in developing alginate-based gel formulations to inhibit Staphylococcus aureus. Initially, the antagonistic actions of three lactic acid bacteria (LAB) (Lacticaseibacillus rhamnosus ATCC 10863, Lactiplantibacillus plantarum ATCC 14917, Limosilactobacillus fermentum ATCC 23271) were evaluated against S. aureus ATCC 25923. All tested LAB inhibited S. aureus, but the highest activity was observed for L. plantarum ATCC 14917 (p < 0.05). The antimicrobial effects of L. plantarum ATCC 14917 cell suspensions, sonicate cells extract, and cell-free supernatants (pH 5 or 7) were analyzed using a broth-based assay. The cell suspensions inhibited S. aureus at concentrations ≥ 10%, and these effects were confirmed by a time-kill assay. Alginate-based gels were formulated with cell suspensions, sonicate cells extract, and cell-free supernatant (pH 5). These formulations inhibited S. aureus growth. Based on the results, the alginate gel with cell suspensions at 10% was selected for further characterization. L. plantarum ATCC 14917 survived in the alginate-based gel, especially when stored at 5 °C. At this temperature, the L. plantarum-containing alginate gel was stable, and it was in compliance with microbiological standards. These findings suggest it can be a promising agent for the topical treatment of infections induced by S. aureus.
RESUMO
Probiotics play an important role against infectious pathogens, such as Escherichia coli (E. coli), mainly through the production of antimicrobial compounds and their immunomodulatory effect. This protection can be detected both on the live probiotic microorganisms and in their inactive forms (paraprobiotics). Probiotics may affect different cells involved in immunity, such as macrophages. Macrophages are activated through contact with microorganisms or their products (lipopolysaccharides, endotoxins or cell walls). The aim of this work was the evaluation of the effect of two probiotic bacteria (Escherichia coli Nissle 1917 and Bifidobacterium animalis subsp. lactis HN019 on macrophage cell line J774A.1 when challenged with two pathogenic strains of E. coli. Macrophage activation was revealed through the detection of reactive oxygen (ROS) and nitrogen (RNS) species by flow cytometry. The effect varied depending on the kind of probiotic preparation (immunobiotic, paraprobiotic or postbiotic) and on the strain of E. coli (enterohemorrhagic or enteropathogenic). A clear immunomodulatory effect was observed in all cases. A higher production of ROS compared with RNS was also observed.
RESUMO
Aim: This study aims to verify the antibacterial and antibiofilm action of cell-free spent medium (CFSM) from four lactic acid bacteria with potential probiotic characteristics (Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus delbrueckii) against two Pseudomonas aeruginosa strains. Main methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the CFSM, antibacterial activity by analysing the formation of inhibition zones, and inhibition of planktonic cultures were determined. Whether an increase in the concentration of CFSM influenced the growth of pathogenic strains and the anti-adhesive activity of the CFSM in biofilm formation (crystal violet and MTT assays) were determined, which were all corroborated by using scanning electron microscopy. Key findings: The relationship between the MIC and MBC values showed a bactericidal or bacteriostatic effect for all the cell-free spent media (CFSMs) tested for P. aeruginosa 9027™ and 27853™ strains. The CFSM supplemental doses of 18 or 22%, 20 or 22%, 46 or 48%, and 50 or 54% of L. acidophilus, L. delbrueckii, L. plantarum, and L. johnsonii, respectively, could completely inhibit the growth of both pathogen strains. The antibiofilm activity of the CFSM in three biofilm conditions (pre-coated, co-incubated, and preformed) demonstrated values ranging between 40% and 80% for biofilm inhibition, and similar results were observed for cell viability. Significance: This work provides strong evidence that the postbiotic derived from different Lactobacilli could be practical as an adjuvant therapy for reducing the use of antibiotics, being a good candidate to overcome the growing challenge of hospital infections due to this pathogen.
RESUMO
Fermented foods are often erroneously equated with probiotics. Although they might act as delivery vehicles for probiotics, or other 'biotic' substances, including prebiotics, synbiotics, and postbiotics, stringent criteria must be met for a fermented food to be considered a 'biotic'. Those criteria include documented health benefit, sufficient product characterization (for probiotics to the strain level) and testing. Similar to other functional ingredients, the health benefits must go beyond that of the product's nutritional components and food matrix. Therefore, the 'fermented food' and 'probiotic' terms may not be used interchangeably. This concept would apply to the other biotics as well. In this context, the capacity of fermented foods to deliver one, several, or all biotics defined so far will depend on the microbiological and chemical level of characterization, the reproducibility of the technological process used to produce the fermented foods, the evidence for health benefits conferred by the biotics, as well as the type and amount of testing carried out to show the probiotic, prebiotic, synbiotic, and postbiotic capacity of that fermented food.
RESUMO
Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-ß, IFN-γ, interleukin(IL) - 1ß, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-ß, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.
RESUMO
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Assuntos
COVID-19 , Probióticos , Humanos , Bactérias , Probióticos/uso terapêutico , Trato Gastrointestinal , StreptococcusRESUMO
The term postbiotic was defined by the International Scientific Association of Probiotics and Prebiotics (ISAPP) as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." Although the ISAPP definition is widely cited, some concerns were aired after publication, and alternative definitions of postbiotic, as well as different terms for inactivated microbes, have been previously suggested. This paper addresses questions about the ISAPP definition that have been raised in different forums, including scientific meetings, social media commentary and personal communications. We focus on the rationale, scope, wording, composition and commercial implementation, as well as what is expected of postbiotics regarding safety, efficacy, quantification and mechanisms of action. We hope that exploring these questions will further clarify the definition and its scope and support a common understanding of the concept of postbiotics.
RESUMO
The term postbiotic was recently defined by an panel of scientists convened by the International Scientific Association of Probiotics and Prebiotics as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." This definition focused on the progenitor microbial cell or cell fragments, not just metabolites, proteins or carbohydrates they might produce. Although such microbe-produced constituents may be functional ingredients of the preparation, they are not required to be present in a postbiotic according to this definition. In this context, terms previously used such as paraprobiotics, ghostbiotics, heat-inactivated probiotics, non-viable probiotics, cell fragments or cell lysates, among others, align with the term postbiotics as conceived by this definition. The applications of postbiotics to infant nutrition and pediatric and adult gastroenterology, mainly, are under development. Some applications for skin health are also underway. As postbiotics are composed of inanimate microorganisms, they cannot colonize the host. However, they can in theory modify the composition or functions of the host microbiota, although evidence for this is scarce. Clinical results are promising, but, overall, there is limited evidence for postbiotics in healthy populations. For example, postbiotics have been studied in fermented infant formulas. The regulation of the term postbiotic is still in its infancy, as no government or international agency around the world has yet incorporated this term in their regulation.
RESUMO
Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.
RESUMO
The mammalian gut microbiota comprises a variety of commensals including potential probiotics and pathobionts, influencing the host itself. Members of the microbiota can intervene with host physiology by several mechanisms, including the secretion of a relatively well-reported set of metabolic products. Another microbiota influence mechanism is the use of secreted proteins (i.e., the secretome), impacting both the host and other community members. While widely reported and studied in pathogens, this mechanism remains understood to a lesser extent in commensals, and this knowledge is increasing in recent years. In the following minireview, we assess the current literature covering different studies, concerning the functions of secretable proteins from members of the gut microbiota (including commensals, pathobionts, and probiotics). Their effect on host physiology and health, and how these effects can be harnessed by postbiotic products, are also discussed.
Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Animais , Interações entre Hospedeiro e Microrganismos , MamíferosRESUMO
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
RESUMO
Periodontitis is a major cause of tooth loss in adults worldwide and is caused by an unbalanced oral microbiota in a susceptible host, ultimately leading to tissue breakdown and bone loss. Traditionally, the treatment for periodontitis is scaling and root planing; however, some cases require adjuvant therapy, such as antibiotics administration or surgery. Various factors are involved in the pathogenesis and interact in an unpredictable way, increasing the complexity of the disease and making it difficult to manage. In this context, the administration of probiotics aimed at resolving bacterial dysbiosis and the associated dysregulation of the immune system has been employed in clinical trials with encouraging results. However, the use of viable microorganisms is not risk-free, and immunocompromised patients may develop adverse effects. Therefore, the use of inactivated microbial cells, cell fractions, or soluble products and metabolites of probiotics, known as postbiotics, has gained increasing attention. In this commentary, we present the current literature assessing the impact of postbiotics on the growth and metabolism of periodontal pathogens, as well as on the progression of periodontitis in rodents and humans. We also discuss the limitations of the available data and what the scientific community should consider in order to transfer this innovative therapeutic modality from the bench to the bedside.
Assuntos
Periodontite , Probióticos , Disbiose , Humanos , Viabilidade Microbiana , Periodontite/tratamento farmacológico , Probióticos/uso terapêutico , Aplainamento Radicular/métodosRESUMO
The scientific community has proposed terms such as non-viable probiotics, paraprobiotics, ghostbiotics, heat-inactivated probiotics or, most commonly, postbiotics, to refer to inanimate microorganisms and/or their components that confer health benefits. This article addresses the various characteristics of different definitions of 'postbiotics' that have emerged over past years. In 2021, the International Scientific Association for Probiotics and Prebiotics (ISAPP) defined a postbiotic as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". This definition of postbiotic requires that the whole or components of inactivated microbes be present, with or without metabolic end products. The definition proposed by ISAPP is comprehensive enough to allow the development of postbiotics from different microorganisms, to be applied in different body sites, encouraging innovation in a promising area for any regulatory category and for companion or production animals, and plant or human health. From a technological perspective, probiotic products may contain inanimate microorganisms, which have the potential to impart a health benefit. However, their contribution to health in most cases has not been established, even if at least one probiotic has been shown to confer the same health benefit by live or inanimate cells.