Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 327(3): E384-E395, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082901

RESUMO

Although unfolded protein response (UPR) is essential for cellular protection, its prolonged activation may induce apoptosis, compromising cellular longevity. The aging process increases the endoplasmic reticulum (ER) stress in skeletal muscle. However, whether combined exercise can prevent age-induced ER stress in skeletal muscle remains unknown. Evidence suggests that ER stress may increase inflammation by counteracting the positive effects of interleukin-10 (IL-10), whereas its administration in cells inhibits ER stress and apoptosis. This study verified the effects of aging and combined exercise on physical performance, ER stress markers, and inflammation in the quadriceps of mice. Moreover, we verified the effects of IL-10 on ER stress markers. C57BL/6 mice were distributed into young (Y, 6 mo old), old sedentary (OS, sedentary, 24 mo old), and old trained group (OT, submitted to short-term combined exercise, 24 mo old). To clarify the role of IL-10 in UPR pathways, knockout mice lacking IL-10 were used. The OS mice presented worse physical performance and higher ER stress-related proteins, such as C/EBP homologous protein (CHOP) and phospho-eukaryotic translation initiation factor 2 alpha (p-eIF2α/eIF2α). The exercise protocol increased muscle strength and IL-10 protein levels in OT while inducing the downregulation of CHOP protein levels compared with OS. Furthermore, mice lacking IL-10 increased BiP, CHOP, and p-eIF2α/eIF2α protein levels, indicating this cytokine can regulate the ER stress response in skeletal muscle. Bioinformatics analysis showed that endurance and resistance training downregulated DNA damage inducible transcript 3 (DDIT3) and XBP1 gene expression in the vastus lateralis of older people, reinforcing our findings. Thus, combined exercise is a potential therapeutic intervention for promoting adjustments in ER stress markers in aged skeletal muscle.NEW & NOTEWORTHY Aging elevates endoplasmic reticulum (ER) stress in skeletal muscle, potentially heightening inflammation by opposing interleukin-10 (IL-10) effects. This study found that short-term combined exercise boosted strength and IL-10 protein levels while reducing CHOP protein levels in older mice. In addition, IL-10-deficient mice exhibited increased ER stress markers, highlighting IL-10's role in regulating ER stress in skeletal muscle. Consequently, combined exercise emerges as a therapeutic intervention to elevate IL-10 and adjust ER stress markers in aging.


Assuntos
Envelhecimento , Estresse do Retículo Endoplasmático , Interleucina-10 , Músculo Esquelético , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Músculo Quadríceps/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
2.
J Physiol ; 602(8): 1637-1654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625711

RESUMO

The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.


Assuntos
Lisossomos , Organelas , Potenciais da Membrana , Organelas/metabolismo , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
4.
Microbiol Spectr ; 12(1): e0213923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38088545

RESUMO

IMPORTANCE: Sexual reproduction allows eukaryotic organisms to produce genetically diverse progeny. This process relies on meiosis, a reductional division that enables ploidy maintenance and genetic recombination. Meiotic differentiation also involves the renewal of cell functioning to promote offspring rejuvenation. Research in the model fungus Podospora anserina has shown that this process involves a complex regulation of the function and dynamics of different organelles, including peroxisomes. These organelles are critical for meiosis induction and play further significant roles in meiotic development. Here we show that PEX13-a key constituent of the protein conduit through which the proteins defining peroxisome function reach into the organelle-is subject to a developmental regulation that almost certainly involves its selective ubiquitination-dependent removal and that modulates its abundance throughout meiotic development and at different sexual differentiation processes. Our results show that meiotic development involves a complex developmental regulation of the peroxisome protein translocation system.


Assuntos
Peroxissomos , Podospora , Peroxissomos/metabolismo , Podospora/genética , Podospora/metabolismo , Proteínas Fúngicas/metabolismo , Transporte Proteico , Meiose
5.
BMC Plant Biol ; 23(1): 467, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803262

RESUMO

BACKGROUND: The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS: Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS: We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.


Assuntos
Arabidopsis , DNA Primase , Animais , DNA Primase/genética , DNA Primase/química , DNA Primase/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Dedos de Zinco , Ribonucleotídeos , Replicação do DNA , Bacteriófago T7/genética
6.
Eur J Investig Health Psychol Educ ; 13(6): 1082-1096, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37366786

RESUMO

Endoplasmic reticulum stress (ER stress) affects many tissues and contributes to the development and severity of chronic diseases. In contrast, regular physical exercise (PE) has been considered a powerful tool to prevent and control several chronic diseases. The present systematic review aimed to evaluate the impact of different PE protocols on ER stress markers in central and peripheral tissues in rodents. The eligibility criteria were based on PICOS (population: rodents; intervention: physical exercise/physical training; control: animals that did not undergo training; outcomes: endoplasmic reticulum stress; studies: experimental). The PubMed/Medline, Science Direct, Scopus, and Scielo databases were analyzed systematically. Quality assessment was performed using SYRCLE's risk of bias tool for animal studies. The results were qualitatively synthesized. Initially, we obtained a total of 2.490 articles. After excluding duplicates, 30 studies were considered eligible. Sixteen studies were excluded for not meeting the eligibility criteria. Therefore, 14 articles were included. The PE protocol showed decreased levels/expression of markers of ER stress in the central and peripheral tissues of rodents. PE can decrease ER stress by reducing cellular stress in the cardiac, brain, and skeletal muscle tissues in rodents. However, robust PE protocols must be considered, including frequency, duration, and intensity, to optimize the PE benefits of counteracting ER stress and its associated conditions.

7.
Physiology (Bethesda) ; 38(3): 0, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856309

RESUMO

Organelles are membrane-lined structures that compartmentalize subcellular biochemical functions. Therefore, interorganelle communication is crucial for cellular responses that require the coordination of such functions. Multiple principles govern interorganelle interactions, which arise from the complex nature of organelles: position, multilingualism, continuity, heterogeneity, proximity, and bidirectionality, among others. Given their importance, alterations in organelle communication have been linked to many diseases. Among the different types of contacts, endoplasmic reticulum mitochondria interactions are the best known; however, mounting evidence indicates that other organelles also have something to say in the pathophysiological conversation.


Assuntos
Organelas , Humanos , Mitocôndrias/fisiologia , Retículo Endoplasmático/fisiologia , Organelas/fisiologia
8.
PeerJ ; 10: e14114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275467

RESUMO

Psychotria viridis (Rubioideae: Rubiaceae), popularly known as chacrona, is commonly found as a shrub in the Amazon region and is well-known to produce psychoactive compounds, such as the N,N-dimethyltryptamine (DMT). Together with the liana Banisteropsis caapi, P. viridis is one of the main components of the Amerindian traditional, entheogenic beverage known as ayahuasca. In this work, we assembled and annotated the organellar genomes (ptDNA and mtDNA), presenting the first genomics resources for this species. The P. viridis ptDNA exhibits 154,106 bp, encoding all known ptDNA gene repertoire found in angiosperms. The Psychotria genus is a complex paraphyletic group, and according to phylogenomic analyses, P. viridis is nested in the Psychotrieae clade. Comparative ptDNA analyses indicate that most Rubiaceae plastomes present conserved ptDNA structures, often showing slight differences at the junction sites of the major four regions (LSC-IR-SSC). For the mitochondrion, assembly graph-based analysis supports a complex mtDNA organization, presenting at least two alternative and circular mitogenomes structures exhibiting two main repeats spanning 24 kb and 749 bp that may symmetrically isomerize the mitogenome into variable arrangements and isoforms. The circular mtDNA sequences (615,370 and 570,344 bp) encode almost all plant mitochondrial genes (except for the ccmC, rps7, rps10, rps14, rps19, rpl2 and rpl16 that appears as pseudogenes, and the absent genes sdh3, rps2, rsp4, rsp8, rps11, rpl6, and rpl10), showing slight variations related to exclusive regions, ptDNA integration, and relics of previous events of LTR-RT integration. The detection of two mitogenomes haplotypes is evidence of heteroplasmy as observed by the complex organization of the mitochondrial genome using graph-based analysis. Taken together, these results elicit the primary insights into the genome biology and evolutionary history of Psychotria viridis and may be used to aid strategies for conservation of this sacred, entheogenic species.


Assuntos
Banisteriopsis , Psychotria , Rubiaceae , Psychotria/genética , Banisteriopsis/química , Rubiaceae/genética , Plantas , DNA Mitocondrial/genética
9.
Front Physiol ; 13: 1039039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267584
10.
Braz J Cardiovasc Surg ; 37(Spec 1): 49-56, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054002

RESUMO

INTRODUCTION: Improved long-term patency of the no-touch (NT) saphenous vein graft has been reported to result from the preservation of a healthy vascular microstructure, especially endothelial cells. However, the precise morphology of endothelial cells and their organelles in NT saphenous vein graft has not been fully investigated. In this study, we assessed the ultrastructure of preserved endothelial cells in saphenous vein graft using transmission electron microscopy. METHODS: Intact control (IC) vein, NT saphenous vein graft, and conventional (CT) saphenous vein graft were harvested from a patient. After observation by light microscopy, the nuclei and mitochondria in the preserved endothelial cells were compared among IC, NT, and CT using transmission electron microscopy, and the endothelial organelles were assessed quantitatively. RESULTS: Light microscopy showed that the preservation of endothelial cells was comparable in IC, NT, and CT. Subsequent transmission electron microscopy observation showed that the nuclei in preserved endothelial cells appeared more swollen in CT than that in NT. Quantitative analysis revealed that nuclear size and circularity of preserved endothelial cells in NT and IC were similar, but those in CT were larger and higher, respectively, than those in IC and NT. In addition, the mitochondrial size in preserved endothelial cells in CT was larger than that in IC and NT. CONCLUSION: Necrotic changes in endothelial organelles characterized by swelling of nuclei and mitochondria were prominent in CT saphenous vein graft. The normally maintained ultrastructure of preserved endothelial cells in NT saphenous vein graft could contribute to long-term patency.


Assuntos
Ponte de Artéria Coronária , Veia Safena , Células Endoteliais , Humanos , Organelas , Veia Safena/transplante , Grau de Desobstrução Vascular
11.
Methods Mol Biol ; 2579: 25-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045195

RESUMO

Trypanosomatids are protozoan parasites among which are the etiologic agents of various infectious diseases in humans, such as Trypanosoma cruzi (causative agent of Chagas disease), Trypanosoma brucei (causative agent of sleeping sickness), and species of the genus Leishmania (causative agents of leishmaniases). The cell cycle in these organisms presents a sequence of events conserved throughout evolution. However, these parasites also have unique characteristics that confer some peculiarities related to the cell cycle phases. This review compares general and peculiar aspects of the cell cycle in the replicative forms of trypanosomatids. Moreover, a brief discussion about the possible cross-talk between telomeres and the cell cycle is presented. Finally, we intend to open a discussion on how a profound understanding of the cell cycle would facilitate the search for potential targets for developing antiparasitic therapies that could help millions of people worldwide.


Assuntos
Doença de Chagas , Leishmania , Trypanosoma brucei brucei , Trypanosoma cruzi , Ciclo Celular/genética , Humanos , Leishmania/genética , Leishmania/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
12.
Front Cell Dev Biol ; 10: 886710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547805

RESUMO

Eukaryotic cell development involves precise regulation of organelle activity and dynamics, which adapt the cell architecture and metabolism to the changing developmental requirements. Research in various fungal model organisms has disclosed that meiotic development involves precise spatiotemporal regulation of the formation and dynamics of distinct intracellular membrane compartments, including peroxisomes, mitochondria and distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the nuclear envelope. This developmental regulation implicates changes in the constitution and dynamics of these organelles, which modulate their structure, abundance and distribution. Furthermore, selective degradation systems allow timely organelle removal at defined meiotic stages, and regulated interactions between membrane compartments support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is implicated in conducting organelle segregation during meiotic differentiation, and defines quality control regulatory systems safeguarding the inheritance of functional membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle remodeling is important for proper activity of the cytoskeletal system conducting meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated regulation of organelle dynamics has a determinant contribution in the formation of the renewed genetically-diverse offspring of meiosis.

13.
Methods Mol Biol ; 2451: 261-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505023

RESUMO

The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.


Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
14.
Front Cell Dev Biol ; 10: 743287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309917

RESUMO

Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.

15.
Rev. bras. cir. cardiovasc ; Rev. bras. cir. cardiovasc;37(spe1): 49-56, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1407341

RESUMO

ABSTRACT Introduction: Improved long-term patency of the no-touch (NT) saphenous vein graft has been reported to result from the preservation of a healthy vascular microstructure, especially endothelial cells. However, the precise morphology of endothelial cells and their organelles in NT saphenous vein graft has not been fully investigated. In this study, we assessed the ultrastructure of preserved endothelial cells in saphenous vein graft using transmission electron microscopy. Methods: Intact control (IC) vein, NT saphenous vein graft, and conventional (CT) saphenous vein graft were harvested from a patient. After observation by light microscopy, the nuclei and mitochondria in the preserved endothelial cells were compared among IC, NT, and CT using transmission electron microscopy, and the endothelial organelles were assessed quantitatively. Results: Light microscopy showed that the preservation of endothelial cells was comparable in IC, NT, and CT. Subsequent transmission electron microscopy observation showed that the nuclei in preserved endothelial cells appeared more swollen in CT than that in NT. Quantitative analysis revealed that nuclear size and circularity of preserved endothelial cells in NT and IC were similar, but those in CT were larger and higher, respectively, than those in IC and NT. In addition, the mitochondrial size in preserved endothelial cells in CT was larger than that in IC and NT. Conclusion: Necrotic changes in endothelial organelles characterized by swelling of nuclei and mitochondria were prominent in CT saphenous vein graft. The normally maintained ultrastructure of preserved endothelial cells in NT saphenous vein graft could contribute to long-term patency.

17.
Expert Rev Proteomics ; 18(9): 809-825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34668810

RESUMO

INTRODUCTION: Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED: This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION: LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Apresentação de Antígeno , Humanos , Inflamação , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo
18.
mBio ; 12(5): e0161521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607459

RESUMO

The endoplasmic reticulum (ER) is an elaborate organelle composed of distinct structural and functional domains. ER structure and dynamics involve membrane-shaping proteins of the reticulon and Yop1/DP1 families, which promote membrane curvature and regulate ER shaping and remodeling. Here, we analyzed the function of the reticulon (RTN1) and Yop1 proteins (YOP1 and YOP2) of the model fungus Podospora anserina and their contribution to sexual development. We found that RTN1 and YOP2 localize to the peripheral ER and are enriched in the dynamic apical ER domains of the polarized growing hyphal region. We discovered that the formation of these domains is diminished in the absence of RTN1 or YOP2 and abolished in the absence of YOP1 and that hyphal growth is moderately reduced when YOP1 is deleted in combination with RTN1 and/or YOP2. In addition, we found that RTN1 associates with the Spitzenkörper. Moreover, RTN1 localization is regulated during meiotic development, where it accumulates at the apex of growing asci (meiocytes) during their differentiation and at their middle region during the subsequent meiotic progression. Furthermore, we discovered that loss of RTN1 affects ascospore (meiotic spore) formation, in a process that does not involve YOP1 or YOP2. Finally, we show that the defects in ascospore formation of rtn1 mutants are associated with defective nuclear segregation and spindle dynamics throughout meiotic development. Our results show that sexual development in P. anserina involves a developmental remodeling of the ER that implicates the reticulon RTN1, which is required for meiotic nucleus segregation. IMPORTANCE Meiosis consists of a reductional cell division, which allows ploidy maintenance during sexual reproduction and which provides the potential for genetic recombination, producing genetic variation. Meiosis constitutes a process of foremost importance for eukaryotic evolution. Proper partitioning of nuclei during this process relies on accurate functioning and positioning of the spindle, the microtubule cytoskeletal apparatus that conducts chromosome segregation. In this research, we show that in the model fungus Podospora anserina this process requires a protein involved in structuring the endoplasmic reticulum (ER)-the reticulon RTN1. The ER is a complex organelle composed of distinct structural domains, including different peripheral domains and the nuclear envelope. Our findings suggest that spindle dynamics during meiosis relies on remodeling of the ER membrane, which involves the activity of RTN1. Our research discloses that the proteins implicated in shaping the ER are main contributors to the regulation of nuclear dynamics during the sexual cycle.


Assuntos
Retículo Endoplasmático/metabolismo , Meiose , Podospora/genética , Podospora/fisiologia , Segregação de Cromossomos , Proteínas de Membrana/metabolismo , Microtúbulos , Membrana Nuclear , Podospora/citologia , Fuso Acromático/metabolismo , Esporos Fúngicos
19.
Front Genet ; 12: 727314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630521

RESUMO

Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. "Campo Grande," S. capitata "RS024" and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.

20.
J Morphol ; 282(9): 1330-1338, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164851

RESUMO

Oogenesis in the armadillo Chaetophractus villosus, a representative species of a mammalian basal clade, was investigated by light microscopy, transmission electron microscopy, and immunohistochemical localization of keratin. At the beginning of the growth phase, oocyte follicles showed one, and sometimes several, large bodies composed of lamellae (multilamellar bodies [MLBs]), which entrap other cytoplasmic organelles at more advanced stages. Lamellae diameter is described in cross-section (37 nm) and tangential sections (50 nm). The MLB of early oocytes is most frequently located close to the nucleus. In large oocytes, both, this body and the free organelles are relocated at the oocyte periphery. The MLB grows from the primary follicle up to its full development at the follicular phase characterized by tall granulosa cells. Mitochondria, smooth small vesicles, and lipofuscin granules are trapped between lamellae. MLBs engage in the formation of different sets of organelles, both trapped and free ones. When oocytes are well developed and the zona pellucida is formed, the MLB is reduced to small remnants detected only by transmission electron microscopy. The MLB disintegrates when an antrum develops. Immunohistochemical localization techniques showed the presence of cytokeratin in the MLBs. This cytokeratin pool may be involved in the filament and desmosome formation found in the periphery of late oocytes.


Assuntos
Tatus , Oócitos , Animais , Núcleo Celular , Feminino , Oogênese , Folículo Ovariano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA