Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38866003

RESUMO

Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.


Assuntos
Antineoplásicos , Neoplasias da Mama , Impressão Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Células MCF-7 , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Dextranos/química , Gelatina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sobrevivência Celular/efeitos dos fármacos , Metacrilatos
2.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793150

RESUMO

Managing Multi-Processor Systems-on-Chip (MPSoCs) is becoming increasingly complex as demands for advanced capabilities rise. This complexity is due to the involvement of more processing elements and resources, leading to a higher degree of heterogeneity throughout the system. Over time, management schemes have evolved from simple to autonomous systems with continuous control and monitoring of various parameters such as power distribution, thermal events, fault tolerance, and system security. Autonomous management integrates self-awareness into the system, making it aware of its environment, behavior, and objectives. Self-Aware Cyber-Physical Systems-on-Chip (SA-CPSoCs) have emerged as a concept to achieve highly autonomous management. Communication infrastructure is also vital to SoCs, and Software-Defined Networks-on-Chip (SDNoCs) can serve as a base structure for self-aware systems-on-chip. This paper presents a survey of the evolution of MPSoC management over the last two decades, categorizing research works according to their objectives and improvements. It also discusses the characteristics and properties of SA-CPSoCs and explains why SDNoCs are crucial for these systems.

3.
Methods Mol Biol ; 2781: 105-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502447

RESUMO

Modeling human pregnancy is challenging as two subjects, the mother and fetus, must be evaluated in tandem. To understand pregnancy, parturition, and adverse pregnancy outcomes, the two feto-maternal interfaces (FMi) that form during gestation (i.e., the placenta and fetal membrane) need to be investigated to understand their biological roles, and organ dysfunction can lead to adverse outcomes. Adverse pregnancy outcomes such as preterm rupture of the membranes, spontaneous preterm birth, preeclampsia, intra-uterine growth restriction, and gestational diabetes rates are on the rise worldwide, highlighting the need for future studies and a better understanding of molecular and cellular pathways that contribute to disease onset. Current in vivo animal models nor in vitro cell culture systems can answer these questions as they do not model the function or structure of human FMis. Utilizing microfabrication and soft-lithography techniques, microfluidic organ-on-chip (OOC) devices have been adapted by many fields to model the anatomy and biological function of complex organs and organ systems within small in vitro platforms.These techniques have been adapted to recreate the fetal membrane FMi (FMi-OOC) using immortalized cells and collagen derived from patient samples. The FMi-OOC is a four-cell culture chamber, concentric circle system, that contains both fetal (amniochorion) and maternal (decidua) cellular layers and has been validated to model physiological and pathological states of pregnancy (i.e., ascending infection, systemic oxidative stress, and maternal toxicant exposure). This platform is fully compatible with various analytical methods such as microscopy and biochemical analysis. This protocol will outline this device's fabrication, cell loading, and utility to model ascending infection-related adverse pregnancy outcomes.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Placenta/metabolismo , Membranas Extraembrionárias/metabolismo , Linhagem Celular , Tecnologia
4.
Biofabrication ; 16(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408383

RESUMO

'On-a-chip' technology advances the development of physiologically relevant organ-mimicking architecture by integrating human cells into three-dimensional microfluidic devices. This method also establishes discrete functional units, faciliting focused research on specific organ components. In this study, we detail the development and assessment of a convoluted renal proximal tubule-on-a-chip (PT-on-a-chip). This platform involves co-culturing Renal Proximal Tubule Epithelial Cells (RPTEC) and Human Umbilical Vein Endothelial Cells (HUVEC) within a polydimethylsiloxane microfluidic device, crafted through a combination of 3D printing and molding techniques. Our PT-on-a-chip significantly reduced high glucose level, exhibited albumin uptake, and simulated tubulopathy induced by amphotericin B. Remarkably, the RPTEC:HUVEC co-culture exhibited efficient cell adhesion within 30 min on microchannels functionalized with plasma, 3-aminopropyltriethoxysilane, and type-I collagen. This approach significantly reduced the required incubation time for medium perfusion. In comparison, alternative methods such as plasma and plasma plus polyvinyl alcohol were only effective in promoting cell attachment to flat surfaces. The PT-on-a-chip holds great promise as a valuable tool for assessing the nephrotoxic potential of new drug candidates, enhancing our understanding of drug interactions with co-cultured renal cells, and reducing the need for animal experimentation, promoting the safe and ethical development of new pharmaceuticals.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana , Técnicas de Cocultura , Túbulos Renais Proximais/metabolismo , Dispositivos Lab-On-A-Chip
5.
Am J Reprod Immunol ; 90(4): e13770, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766409

RESUMO

PROBLEM: Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY: FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS: U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS: Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.


Assuntos
Nascimento Prematuro , Ureaplasma , Recém-Nascido , Feminino , Humanos , Transdução de Sinais , Âmnio , Inflamação
6.
Biosensors (Basel) ; 13(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366947

RESUMO

The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 µA mM-1 cm-2.


Assuntos
Técnicas Biossensoriais , Glucose , Glucose/metabolismo , Microfluídica , Polímeros/química , Peróxido de Hidrogênio , Glucose Oxidase/química , Oxirredução , Eletrodos , Técnicas de Cultura de Células em Três Dimensões , Técnicas Eletroquímicas , Enzimas Imobilizadas/química
7.
Bioengineering (Basel) ; 10(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237624

RESUMO

Tumor-on-chips have become an effective resource in cancer research. However, their widespread use remains limited due to issues related to their practicality in fabrication and use. To address some of these limitations, we introduce a 3D-printed chip, which is large enough to host ~1 cm3 of tissue and fosters well-mixed conditions in the liquid niche, while still enabling the formation of the concentration profiles that occur in real tissues due to diffusive transport. We compared the mass transport performance in its rhomboidal culture chamber when empty, when filled with GelMA/alginate hydrogel microbeads, or when occupied with a monolithic piece of hydrogel with a central channel, allowing communication between the inlet and outlet. We show that our chip filled with hydrogel microspheres in the culture chamber promotes adequate mixing and enhanced distribution of culture media. In proof-of-concept pharmacological assays, we biofabricated hydrogel microspheres containing embedded Caco2 cells, which developed into microtumors. Microtumors cultured in the device developed throughout the 10-day culture showing >75% of viability. Microtumors subjected to 5-fluorouracil treatment displayed <20% cell survival and lower VEGF-A and E-cadherin expression than untreated controls. Overall, our tumor-on-chip device proved suitable for studying cancer biology and performing drug response assays.

8.
Anal Chim Acta ; 1254: 341077, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005016

RESUMO

Digital microfluidics (DMF) is a versatile lab-on-a-chip platform that allows integration with several types of sensors and detection techniques, including colorimetric sensors. Here, we propose, for the first time, the integration of DMF chips into a mini studio containing a 3D-printed holder with previously fixed UV-LEDs to promote sample degradation on the chip surface before a complete analytical procedure involving reagent mixture, colorimetric reaction, and detection through a webcam integrated on the equipment. As a proof-of-concept, the feasibility of the integrated system was successfully through the indirect analysis of S-nitrosocysteine (CySNO) in biological samples. For this purpose, UV-LEDs were explored to perform the photolytic cleavage of CySNO, thus generating nitrite and subproducts directly on DMF chip. Nitrite was then colorimetrically detected based on a modified Griess reaction, in which reagents were prepared through a programable movement of droplets on DMF devices. The assembling and the experimental parameters were optimized, and the proposed integration exhibited a satisfactory correlation with the results acquired using a desktop scanner. Under the optimal experimental conditions, the obtained CySNO degradation to nitrite was 96%. Considering the analytical parameters, the proposed approach revealed linear behavior in the CySNO concentration range between 12.5 and 400 µmol L-1 and a limit of detection equal to 2.8 µmol L-1. Synthetic serum and human plasma samples were successfully analyzed, and the achieved results did not statistically differ from the data recorded by spectrophotometry at the confidence level of 95%, thus indicating the huge potential of the integration between DMF and mini studio to promote complete analysis of lowmolecular weight compounds.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Colorimetria , Nitritos
9.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850608

RESUMO

A refractive index sensor based on an on-chip silicon nitride (Si3N4) ridge waveguide long-range surface plasmon polariton (LRSPP) is theoretically designed. The waveguide sensor consists of a gold film to enable the plasmonic resonance on top of a Cytop polymer layer. A proper finite element method was used to design and optimize the geometric parameters at the optical wavelength of 633 nm. In addition, the spectral performance was evaluated using the transfer matrix method from 580 to 680 nm. The redshifted interference spectrum results from an increasing analyte refractive index. The sensitivities of 6313 dB/cm/RIU and 251.82 nm/RIU can be obtained with a 400 nm wide and 25 nm thick Au layer. The proposed sensor has the potential for point-of-care applications considering its compactness and simplicity of construction.

10.
Int J Pharm ; 634: 122629, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682507

RESUMO

Photodynamic therapy using Hypericin (Hy-PDT) is an alternative non-invasive treatment that enables selective tumor inhibition and angiogenesis derived from the differential recruitment of endothelial cells in the tumor microenvironment. Most PDT studies were performed on in vitro models without vascular biomechanical simulation. Our work strives to develop a microchip that generates a constant shear stress force to investigate the Hy-PDT efficiency on human umbilical vein endothelial cells (HUVECs). The microchip with a single straight microchannel was composed of the bottom layer (polystyrene), the middle layer (double-sided biocompatible adhesive tape), and the top layer (polyester film) and could produce shear stress in the range of 1.4 - 7.0 dyn cm-2. The quantification of vascular endothelial growth factor (VEGF), cell viability, and activities of caspases 3 and 7 were assayed to validate the microchip and Hy-PDT efficacy. After the endothelization, static and dynamic cell incubations with Hy were conducted in microchips. Compared to static systems, the shear stress displayed its effect on the increasing release of VEGF and promoted more cell damage and cell death via necrosis during Hy-PDT. In conclusion, the expressive shear stress-dependent manner during PDT treatments suggests that the microchip could be an essential approach in preclinical tests to evaluate the therapeutic outcome considering the endothelial shear stress microenvironment.


Assuntos
Perileno , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais , Sistemas Microfisiológicos , Antracenos
11.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162025

RESUMO

Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.


Assuntos
Algoritmos , Software , Animais , Abelhas
12.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770444

RESUMO

Real-time image processing and computer vision systems are now in the mainstream of technologies enabling applications for cyber-physical systems, Internet of Things, augmented reality, and Industry 4.0. These applications bring the need for Smart Cameras for local real-time processing of images and videos. However, the massive amount of data to be processed within short deadlines cannot be handled by most commercial cameras. In this work, we show the design and implementation of a manycore vision processor architecture to be used in Smart Cameras. With massive parallelism exploration and application-specific characteristics, our architecture is composed of distributed processing elements and memories connected through a Network-on-Chip. The architecture was implemented as an FPGA overlay, focusing on optimized hardware utilization. The parameterized architecture was characterized by its hardware occupation, maximum operating frequency, and processing frame rate. Different configurations ranging from one to eighty-one processing elements were implemented and compared to several works from the literature. Using a System-on-Chip composed of an FPGA integrated into a general-purpose processor, we showcase the flexibility and efficiency of the hardware/software architecture. The results show that the proposed architecture successfully allies programmability and performance, being a suitable alternative for future Smart Cameras.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Computadores , Software
13.
Micromachines (Basel) ; 12(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683246

RESUMO

Network-on-Chip is a good approach to working on intra-chip communication. Networks with irregular topologies may be better suited for specific applications because of their architectural nature. A good design space exploration can help the design of the network to obtain more optimized topologies. This paper proposes a way of optimizing networks with irregular topologies through the use of a genetic algorithm. The network proposed here has heterogeneous routers that aim to optimize the network and support applications with real-time tasks. The goal is to find networks that are optimized for average latency and percentage of real-time packets delivered within the deadline. The results show that we have been able to find networks that can deliver all the real-time packets, obtain acceptable latency values, and shrink the chip area.

14.
J Tissue Eng Regen Med ; 15(11): 883-899, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339588

RESUMO

The mechanical environment of living cells is as critical as chemical signaling. Mechanical stimuli play a pivotal role in organogenesis and tissue homeostasis. Unbalances in mechanotransduction pathways often lead to diseases, such as cancer, cystic fibrosis, and neurodevelopmental disorders. Despite its inherent relevance, there is a lack of proper mechanoresponsive in vitro study systems. In this context, there is an urge to engineer innovative, robust, dynamic, and reliable organotypic technologies to better connect cellular processes to organ-level function and multi-tissue cross-talk. Mechanically active organoid-on-chip has the potential to surpass this challenge. These systems converge microfabrication, microfluidics, biophysics, and tissue engineering fields to emulate key features of living organisms, hence, reducing costs, time, and animal testing. In this review, we intended to present cutting-edge organ-on-chip platforms that integrate biomechanical stimuli as well as novel multicellular culture, such as organoids. We focused on its application in two main fields: precision medicine and drug development. Moreover, we also discussed the state of the art for the development of an engineered model to assess patient-derived tumor organoid metastatic potential. Finally, we highlighted the current drawbacks and emerging opportunities to match the industry needs. We envision the use of mechanoresponsive organotypic-on-chip microdevices as an indispensable tool for precision medicine, drug development, disease modeling, tissue engineering, and developmental biology.


Assuntos
Biofísica , Dispositivos Lab-On-A-Chip , Organoides/fisiologia , Engenharia Tecidual , Animais , Fenômenos Biomecânicos , Encéfalo/fisiologia , Humanos , Microfluídica
15.
Micromachines (Basel) ; 12(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807118

RESUMO

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.

16.
Micromachines (Basel) ; 12(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673049

RESUMO

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs-optimized and fixed at synthesis time-the interconnection nonconformity with the different applications' requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.

17.
Micromachines (Basel) ; 11(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266035

RESUMO

Current System-on-Chips (SoCs) execute applications with task dependency that compete for shared resources such as buses, memories, and accelerators. In such a structure, the arbitration policy becomes a critical part of the system to guarantee access and bandwidth suitable for the competing applications. Some strategies proposed in the literature to cope with these issues are Round-Robin, Weighted Round-Robin, Lottery, Time Division Access Multiplexing (TDMA), and combinations. However, a fine-grained bandwidth control arbitration policy is missing from the literature. We propose an innovative arbitration policy based on opportunistic access and a supervised utilization of the bus in terms of transmitted flits (transmission units) that settle the access and fine-grained control. In our proposal, every competing element has a budget. Opportunistic access grants the bus to request even if the component has spent all its flits. Supervised debt accounts a record for every transmitted flit when it has no flits to spend. Our proposal applies to interconnection systems such as buses, switches, and routers. The presented approach achieves deadlock-free behavior even with task dependency applications in the scenarios analyzed through cycle-accurate simulation models. The synergy between opportunistic and supervised debt techniques outperforms Lottery, TDMA, and Weighted Round-Robin in terms of bandwidth control in the experimental studies performed.

18.
J Transl Med ; 18(1): 311, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787880

RESUMO

Endometriosis is a chronic inflammatory hormone-dependent condition associated with pelvic pain and infertility, characterized by the growth of ectopic endometrium outside the uterus. Given its still unknown etiology, treatments usually aim at diminishing pain and/or achieving pregnancy. Despite some progress in defining mode-of-action for drug development, the lack of reliable animal models indicates that novel approaches are required. The difficulties inherent to modeling endometriosis are related to its multifactorial nature, a condition that hinders the recreation of its pathology and the identification of clinically relevant metrics to assess drug efficacy. In this review, we report and comment endometriosis models and how they have led to new therapies. We envision a roadmap for endometriosis research, integrating Artificial Intelligence, three-dimensional cultures and organ-on-chip models as ways to achieve better understanding of physiopathological features and better tailored effective treatments.


Assuntos
Endometriose , Infertilidade , Animais , Inteligência Artificial , Endométrio , Feminino , Humanos , Gravidez , Útero
19.
HardwareX ; 8: e00126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35498248

RESUMO

This paper proposes a low-cost portable electronic system for estimating step width during the human gait cycle. This device, intended to support the Walking Stance item of the fall risk assessment test Performance Oriented Mobility Assessment (POMA), contains three electronic boards, comprising two sensing nodes and a concentrator. Each sensing node contains a force sensitive resistor (FSR) and time-of-flight camera (TOF). Each FSR is placed inside the subject's shoe, while each TOF camera is located at the back of their foot. The FSR detects contact between heel and ground, and the TOF measures the distance to a barrier located on the right side of the walking path. Step width is calculated as the difference between the TOF measurements. After the walk is complete, the information obtained by the FSRs and TOFs is sent via a 433 MHz wireless communication to the concentrator board, which is connected to the USB port of a personal computer (PC). The proposed step width measurement system was validated with an infrared based motion capture (Vicon Corp.), giving an error equal to 11.4%  ±  5.5%.

20.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835325

RESUMO

Reducing component size and increasing the operating frequency of integrated circuits makes the Systems-on-Chip (SoCs) more susceptible to faults. Faults can cause errors, and errors can be propagated and lead to a system failure. SoCs employing many cores rely on a Network-on-Chip (NoC) as the interconnect architecture. In this context, this study explores alternatives to implement the flow regulation, routing, and arbitration controllers of an NoC router aiming at minimizing error propagation. For this purpose, a router with Finite-State Machine (FSM)-based controllers was developed targeting low use of logical resources and design flexibility for implementation in FPGA devices. We elaborated and compared the synthesis and simulation results of architectures that vary their controllers on Moore and Mealy FSMs, as well as the Triple Modular Redundancy (TMR) hardening application. Experimental results showed that the routing controller was the most critical one and that migrating a Moore to a Mealy controller offered a lower error propagation rate and higher performance than the application of TMR. We intended to use the proposed router architecture to integrate cores in a fault-tolerant NoC-based system for data processing in harsh environments, such as in space applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA