Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 150: 106335, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150817

RESUMO

This study aimed to identify the potential use of the ceramic composite ZrO2(CeO2)-Al2O3 as a dental implant due to its intrinsic geometry and different masticatory loads based on finite element simulations. Ceramic samples were sintered at 1500 °C-2h, and characterized: The mechanical properties of the ceramic composite (hardness, fracture toughness, flexural strength, Young's Modulus, and Poisson ratio) were determined, in addition to the relative density and its structural characteristics. Commercial dental implant designs (incisal and third-molar) on CAD models were used in this study as an initial implant geometry applied in a typical simulated mandible anatomy. Finite element models were generated for implant geometries using CAD and CAE techniques. Loading cases were considered based on different intensities (100-500 N) and orientation angles to the implant axis (0° and 45°) to reproduce human masticatory conditions. For comparison purposes, the numerical predictions were compared with finite element simulations of gold-standard titanium implants. Ce-TZP/Al2O3 sintered ceramics showed flexural strength of 952.6 ± 88 MPa, hardness and fracture toughness of 1427 ± 46 HV and 11.3 ± 0.4 MPa m1/2, respectively, beside Young's modulus of 228.3 ± 65 GPa and Poisson ratio of 0.28. For both Ce-TZP/Al2O3 dental implant geometries, the implant prototypes showed adequate mechanical behavior regardless of the masticatory load value or the orientation angle applied in the simulations: All finite element predictions are lower than the values established by Mohr Coulomb's failure criterion, allowing the feasibility, preliminarily, of the proposed ceramics for dental implant applications without fracture risk.


Assuntos
Implantes Dentários , Humanos , Teste de Materiais , Zircônio/química , Resistência à Flexão , Cerâmica/química , Estresse Mecânico , Análise do Estresse Dentário , Propriedades de Superfície
2.
Heliyon ; 9(11): e21044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928014

RESUMO

This article presents an improved mathematical model and numerical simulation for weathering of large areas with complex topography. It uses the equations of momentum, temperature, and humidity in turbulent air and for heat and water infiltration into soils. A mathematical model is also presented to calculate the soil porosity fraction produced by physical rock weathering in areas where soil is produced from intrusive rocks (batholiths). An algorithm based on air velocity, humidity (rainfall), temperature variation, and soil topography was developed to quantify soil erosion and change of relief at each point and time step in air, at the ground surface, and within the soil. This results in a complete air-soil model based on conservation laws that have not previously been applied to large areas of the earth's surface. The mathematical model is solved using large-scale numerical simulations applied to an area of 6.6 km2 in the Sierra Nevada batholith of California, USA. The results show that the wind velocity and resulting erosion is greater in areas with steeper slopes and that moisture accumulates mainly in low and flat areas; therefore, erosion is not uniform throughout the study area. In addition, computer simulations localized calculations to discrete grid cells within the porous (saprolite) fraction of the soil produced by freezing and thawing of water in rock. Results indicate that this physical mechanism is the primary contributor to weathering of rock at the study area.

3.
Front Bioeng Biotechnol ; 11: 1233939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675404

RESUMO

This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.

4.
Materials (Basel) ; 16(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241329

RESUMO

In this work, we apply the Particle Finite Element Method (PFEM) and Smoothed Particle Hydrodynamics (SPH) to simulate the orthogonal cutting chip formation of two workpiece materials, i.e., AISI 1045 steel and Ti6Al4V titanium alloy. A modified Johnson-Cook constitutive model is used to model the plastic behavior of the two workpiece materials. No damage or strain softening is included in the model. The friction between the workpiece and the tool is modeled following Coulomb's law with a temperature-dependent coefficient. The accuracy of PFEM and SPH in predicting thermomechanical loads at various cutting speeds and depths against the experimental data are compared. The results show that both numerical methods can predict the rake face temperature of AISI 1045 with errors less than 34%. For Ti6Al4V, however, the temperature prediction errors are significantly higher than those of the steel alloy. Errors in force prediction were in the range of 10% to 76% for both methods, which compare very well with those reported in the literature. This investigation infers that the Ti6Al4V behavior under machining conditions is difficult to model on the cutting scale irrespective of the choice of numerical method.

5.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295234

RESUMO

Computational modeling plays an important role in the design of orthopedic implants. In the case of biodegradable magnesium alloys, a modeling approach is required to predict the effects of degradation on the implant's capacity to provide the desired stabilization of fractured bones. In the present work, a numerical corrosion model is implemented to predict the effects of biodegradation on the structural integrity of temporary trauma implants. A non-local average pitting corrosion model is calibrated based on experimental data collected from in vitro degradation experiments and mechanical testing of magnesium WE43 alloy specimens at different degradation stages. The localized corrosion (pitting) model was implemented by developing a user material subroutine (VUMAT) with the program Abaqus®/Explicit. In order to accurately capture both the linear mechanical reduction in specimen resistance, as well as the non-linear corrosion behavior of magnesium WE43 observed experimentally, the corrosion model was extended by employing a variable corrosion kinetic parameter, which is time-dependent. The corrosion model was applied to a validated case study involving the pull-out test of orthopedic screws and was able to capture the expected loss of screw pull-out force due to corrosion. The proposed numerical model proved to be an efficient tool in the evaluation of the structural integrity of biodegradable magnesium alloys and bone-implant assembly and can be used in future works in the design optimization and pre-validation of orthopedic implants.

6.
Materials (Basel) ; 15(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407708

RESUMO

Adequately predicting overlay behaviour is essential for flexible pavement rehabilitation to reach the predicted lifespan. Reflective cracking is one of the main failure mechanisms affecting overlay performance. This failure may occur due to cracks in the lower layers that propagate to the overlay due to traffic loads, temperature variations, shrinkage cracking of cement-treated layers, and subgrade movements. This work aims to assess the reflective cracking phenomenon of asphalt rubber mixtures as an overlay through laboratory tests and numerical simulation. Four-point bending equipment and the reflective crack device were used to perform the laboratory tests. A numerical simulation through the finite element method was accomplished to estimate the von Mises strain and develop reflective cracking fatigue laws. The results showed that the asphalt rubber mixtures are suitable for extending overlay lifespan considering reflective cracking. The evaluated asphalt rubber mixtures presented reflective cracking resistance almost eight times greater than the conventional ones.

7.
Entropy (Basel) ; 24(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455116

RESUMO

In this work, a transient analysis of a dual-skin chest-freezer refrigeration system, operating with R290, is studied numerically with the purpose of performing the characterization of the system through the second law of thermodynamics. A mathematical model which accounts for refrigerant mass distribution inside the system is used. In addition, this work addresses the calculation of entropy generation and exergy destruction for characterizing the system performance during its operations. In order to validate the model, a comparison with measured experimental data is performed for both pull-down and on-off operations. The characterization of the system through the second law of thermodynamics is conducted using two different methods. One consists of a direct calculation of the entropy generation rate and the second one in the calculation of exergy destruction rate. The equivalence of these two methods is used as an indicative of the "correctness" of the performed calculations. The model results agree near 97% with the experimental data used in the comparisons. Entropy generation and exergy destruction results along time for the whole system and in its individual components are characterized with the second law. These results are very useful for improving refrigeration system design.

8.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161963

RESUMO

In-service prestressed concrete box girder bridges have received increasing attention in recent years due to a large number of bridges reaching decades in service. Therefore, the ageing of infrastructure demands the development of robust condition assessment methodologies based on affordable technology such as vehicle-induced vibration tests (VITs) in contrast with more expensive existing technologies such as tests using hammers or shakers. Ambient vibration tests (AVTs) have been widely used worldwide, taking advantage of freely available ambient excitation sources. However, the literature has commonly reported insufficient input energy to excite the structure to obtain satisfactory modal identification results, especially in long-span concrete bridges. On the other hand, the use of forced vibration tests (FVTs) requires more economic resources. This paper presents the results of field measurements at optimally selected locations in VITs consisting of a 32-ton truck and a springboard with a height of 50 mm. AVTs using optimal sensor placement (OSP) provide similar results to VITs without considering OSP locations. Additionally, the VIT/AVT cost ratio is reduced to 2 since a shorter data collection time is achieved within a one-day (8 h) test framework, which minimizes temperature effects, thus leading to improvements in AVT identification results, especially in vertical modes.

9.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832438

RESUMO

The complete rolling schedule (25 passes) of steel beams in a mill was simulated to predict the final beam length, geometry of the cross-section, effective stress, effective plastic strain and rolling power for two cases; the first case corresponds to the hot rolling process assuming a constant temperature of 1200 ∘C. The simulation of the second case considered the real beam temperature at each pass to compare the results with in-plant measurements and validate the numerical model. Then, the results of both cases were compared to determine the critical passes of the process with high peaks of required power, coinciding with the reports at the mill. These critical passes share the same conditions, high percentage of reduction in cross-sectional area and low beam temperature. Additionally, a potential reduction of passes in the process was proposed identifying passes with low required power, minimal reduction in area of cross-section and essentially unchanged geometry. Therefore, it is reasonable to state that using the present research methodology, it is possible to have a better control of the process allowing innovation in the production of profiles with more complex geometries and new materials.

10.
BMC Infect Dis ; 21(1): 1111, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711190

RESUMO

BACKGROUND: Underreporting cases of infectious diseases poses a major challenge in the analysis of their epidemiological characteristics and dynamical aspects. Without accurate numerical estimates it is difficult to precisely quantify the proportions of severe and critical cases, as well as the mortality rate. Such estimates can be provided for instance by testing the presence of the virus. However, during an ongoing epidemic, such tests' implementation is a daunting task. This work addresses this issue by presenting a methodology to estimate underreported infections based on approximations of the stable rates of hospitalization and death. METHODS: We present a novel methodology for the stable rate estimation of hospitalization and death related to the Corona Virus Disease 2019 (COVID-19) using publicly available reports from various distinct communities. These rates are then used to estimate underreported infections on the corresponding areas by making use of reported daily hospitalizations and deaths. The impact of underreporting infections on vaccination strategies is estimated under different disease-transmission scenarios using a Susceptible-Exposed-Infective-Removed-like (SEIR) epidemiological model. RESULTS: For the considered locations, during the period of study, the estimations suggest that the number of infected individuals could reach 30% of the population of these places, representing, in some cases, more than six times the observed numbers. These results are in close agreement with estimates from independent seroprevalence studies, thus providing a strong validation of the proposed methodology. Moreover, the presence of large numbers of underreported infections can reduce the perceived impact of vaccination strategies in reducing rates of mortality and hospitalization. CONCLUSIONS: pBy using the proposed methodology and employing a judiciously chosen data analysis implementation, we estimate COVID-19 underreporting from publicly available data. This leads to a powerful way of quantifying underreporting impact on the efficacy of vaccination strategies. As a byproduct, we evaluate the impact of underreporting in the designing of vaccination strategies.


Assuntos
COVID-19 , Hospitalização , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos , Vacinação
11.
Materials (Basel) ; 14(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070453

RESUMO

Biofuels represent an energy option to mitigate polluting gases. However, technical problems must be solved, one of them is to improve the combustion process. In this study, the geometry of a piston head for a diesel engine was redesigned. The objective was to improve the combustion process and reduce polluting emissions using biodiesel blends as the fuel. The methodology used was the mechanical engineering design process. A commercial piston (base piston) was selected as a reference model to assess the piston head's redesign. Changes were applied to the profile of the piston head based on previous research and a new model was obtained. Both models were evaluated and analyzed using the finite element method, where the most relevant physical conditions were temperature and pressure. Numerical simulations in the base piston and the new piston redesign proposal presented similar behaviors and results. However, with the proposed piston, it was possible to reduce the effort and the material. The proposed piston profile presents adequate results and behaviors. In future, we suggest continuing conducting simulations and experimental tests to assess its performance.

12.
Polymers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920989

RESUMO

The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson's coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangular lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson's coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.

13.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729441

RESUMO

When simulating blood flow in intracranial aneurysms (IAs), the Newtonian model seems to be ubiquitous. However, analyzing the results from the few studies on this subject, the doubt remains on whether it is necessary to use non-Newtonian models in computational fluid dynamics (CFD) simulations of cerebral vascular flows. The objective of this study is to investigate whether different rheology models would influence the hemodynamic parameters related to the wall shear stress (WSS) for ruptured and unruptured IA cases, especially because ruptured aneurysms normally have morphological features, such as lobular regions and blebs, that could trigger non-Newtonian phenomena in the blood flow due to low shear rates. Using CFD in an open-source framework, we simulated four ruptured and four unruptured patient-specific aneurysms to assess the influence of the blood modeling on the main hemodynamic variables associated with aneurysm formation, growth, and rupture. Results for WSS and oscillatory shear index (OSI) and their metrics were obtained using Casson and Carreau-Yasuda non-Newtonian models and were compared with those obtained using the Newtonian model. We found that all differences between non-Newtonian and the Newtonian models were consistent among all cases irrespective of their rupture status. We further found that the WSS at peak systole is overestimated by more than 50% by using the non-Newtonian models, but its metrics based on time and surface averaged values are less affected-the maximum relative difference among the cases is 7% for the Casson model. On the other hand, the surface-averaged OSI is underestimated by more than 30% by the non-Newtonian models. These results suggest that it is recommended to investigate different blood rheology models in IAs simulations when specific parameters to characterize the flow are needed, such as peak-systole WSS and OSI.


Assuntos
Aneurisma Intracraniano
14.
Polymers (Basel) ; 13(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671030

RESUMO

This article aims to study the non-Fickian water absorption process in vegetable fiber-reinforced polymer composite using the Langmuir-type model, evaluating the influence of mass diffusivity on the process. The numerical solutions of the governing equations were obtained using the finite-volume method. Transient results of the local and average moisture content, free and entrapped water molecules concentration considering the constant diffusivity and as a function of the average and local moisture content were presented and analyzed. It was observed that the mass diffusivity effectively influences the water absorption behavior, especially in the initial time of the process, where higher differences in the water migration rates into the material are found. The largest free and entrapped water molecule concentration gradients were found close to the composite surface, especially when considering constant mass diffusivity.

15.
Bull Volcanol ; 82(12): 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204047

RESUMO

We have used a three-dimensional, non-equilibrium multiphase flow numerical model to simulate subplinian eruption scenarios at La Soufrière de Guadeloupe (Lesser Antilles, France). Initial and boundary conditions for computer simulations were set on the basis of independent estimates of eruption source parameters (i.e. mass eruption rate, volatile content, temperature, grain size distribution) from a field reconstruction of the 1530 CE subplinian eruption. This event is here taken as a reference scenario for hazard assessment at La Soufrière de Guadeloupe. A parametric study on eruption source parameters allowed us to quantify their influence on the simulated dynamics and, in particular, the increase of the percentage of column collapse and pyroclastic density current (PDC) intensity, at constant mass eruption rate, with variable vent diameter. Numerical results enabled us to quantify the effects of the proximal morphology on distributing the collapsing mass around the volcano and into deep and long valleys and to estimate the areas invaded by PDCs, their associated temperature and dynamic pressure. Significant impact (temperature > 300 °C and dynamic pressure > 1 kPa) in the inhabited region around the volcano is expected for fully collapsing conditions and mass eruption rates > 2 × 107 kg/s. We thus combine this spatial distribution of temperature and dynamic pressure with an objective consideration of model-related uncertainty to produce preliminary PDC hazard maps for the reference scenario. In such a representation, we identify three areas of varying degree of susceptibility to invasion by PDCs-very likely to be invaded (and highly impacted), susceptible to invasion (and moderately impacted), and unlikely to be invaded (or marginally impacted). The study also raises some key questions about the use of deterministic scenario simulations for hazard assessment, where probability distributions and uncertainties are difficult to estimate. Use of high-performance computing techniques will in part allow us to overcome such difficulties, but the problem remains open in a scientific context where validation of numerical models is still, necessarily, an incomplete and ongoing process. Nevertheless, our findings provide an important contribution to the quantitative assessment of volcanic hazard and risk at La Soufrière de Guadeloupe particularly in the context of the current unrest of the volcano and the need to prepare for a possible future reawakening of the volcano that could culminate in a magmatic explosive eruption. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00445-020-01411-6) contains supplementary material, which is available to authorized users.

16.
Polymers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121178

RESUMO

The purpose of this article was to theoretically study the non-Fickian moisture absorption process in vegetable-fiber-reinforced polymer composites using a Langmuir-type model. Here, the focus was on evaluating the effect of the water layer thickness that surrounds the composite during the water migration process. The solutions of the governing equations were obtained using the finite volume method, considering constant thermophysical properties and non-deformable material. The results for the local and average moisture content and concentration, gradient values, and the transient rates of the free and bound (water) molecules in the process were presented and analyzed. It was observed that the water layer thickness strongly influenced the water absorption kinetics, the moisture content gradient values, and the equilibrium moisture content inside the material. It is envisaged that this new approach will contribute to better interpretation of experimental data and a better understanding of the physical phenomenon of water absorption, which directly affects the properties of composite materials.

17.
J Environ Manage ; 273: 111154, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771852

RESUMO

The frequent environment-unfriendly treatments of agro-industrial bio-wastes cause severe pollution through air pollution and through residual effluents and hazardous solid waste. These bio-wastes can contain phenolic compounds, forms of phenolic acids and flavonoids in plants. They are however the most abundant class of many phytochemicals and have been given great interest due to their health advantage and high economic value. An interesting upgrading of these bio-wastes may consist in obtaining a concentrated extract of phenolic compounds using no-toxic solvents, hence protecting the environment and human health. In this work, different alternatives of the extraction process were evaluated using an exergetic analysis. The energy and water consumptions, CO2 emissions, exergetic yield, wasted and destroyed exergy were calculated. It was found that several alternatives for recycle streams were convenient (streams with higher chemical exergy were not discharged into the environment). The energy and water consumption for the best alternative (ethanol-water ratio 1/1 including recycle stream, named E-W 1/1 Rec) were 567 MJ/h and 105 kg/h, respectively and the CO2 emission was 105 kg/h. The calculated exergy destruction indicated that the evaporation and distillation stages may be optimized towards a more sustainable operation. It is not advisable to dry the bio-waste if it will be immediately processed once generated.


Assuntos
Poluição do Ar , Resíduos Industriais , Flavonoides , Humanos , Fenóis , Reciclagem
18.
J Comput Neurosci ; 48(3): 357-363, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519227

RESUMO

Building upon previous experiments can be used to accomplish new goals. In computing, it is imperative to reuse computer code to continue development on specific projects. Reproducibility is a fundamental building block in science, and experimental reproducibility issues have recently been of great concern. It may be surprising that reproducibility is also of concern in computational science. In this study, we used a previously published code to investigate neural network activity and we were unable to replicate our original results. This led us to investigate the code in question, and we found that several different aspects, attributable to floating-point arithmetic, were the cause of these replicability issues. Furthermore, we uncovered other manifestations of this lack of replicability in other parts of the computation with this model. The simulated model is a standard system of ordinary differential equations, very much like those commonly used in computational neuroscience. Thus, we believe that other researchers in the field should be vigilant when using such models and avoid drawing conclusions from calculations if their qualitative results can be substantially modified through non-reproducible circumstances.


Assuntos
Neurônios/fisiologia , Simulação por Computador , Modelos Neurológicos , Redes Neurais de Computação , Reprodutibilidade dos Testes
19.
MethodsX ; 7: 82-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31908988

RESUMO

In the present paper, a computational methodology for the development of microdevices and microreactors are presented. The methodology was based on Computational Fluid Dynamics (CFD), i.e., the solution of transport equations governing the flow field. The methodology presents a step-by-step tutorial for modeling and simulation of such microdevices that can be used by beginner or experienced users. The proposed methodology was employed in two study cases: fluid mixing and fluid mixing accompanied by chemical reaction. Two new geometry designs were evaluated: a micrometric scale channel with triangular cross section (MT) and a millimeter range scaled channel (MTB). It is expect that the reported methodology contributes to the popularization of CFD usage among researchers, scientists and Microfluidic enthusiasts. Also, it can motivate future studies to focus firstly on geometry optimization by numerical simulations, providing a faster and economical way to develop microdevices. •A CFD-based methodology was presented for the development of microdevices and microreactors•The methodology can be used in distinct fluid mixing and chemical reaction systems•Numerical simulation allows a faster microdevice development procedure with costs reductions.

20.
Artif Organs ; 44(8): 797-802, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31437303

RESUMO

Congestive heart failure is a pathology of global incidence that affects millions of people worldwide. When the heart weakens and fails to pump blood at physiological rates commensurate with the requirements of tissues, two main alternatives are cardiac transplant and ventricular assist devices (VADs). This article presents the design strategy for development of a customized VAD electromagnetic actuator. Electromagnetic actuator is a brushless direct current motor customized to drive the pump impeller by permanent magnets located in rotor-stator coupling. In this case, ceramic pivot bearings support the VAD impeller. Electronic circuitry controls rotation switching current in stator coils. The proposed methodology consisted of analytical numerical design, tridimensional computational modeling, numerical simulations using Maxwell software, actuator prototyping, and validation in the dynamometer. The axial flow actuator was chosen by its size and high power density compared to the radial flow type. First step consisted of estimating the required torque to drive the pump. Torque was estimated at 2100 rpm and mean current of 0.5 A. Numerical analysis using finite element method mapped vectors and fields to build stator coils and actuator assemblage. After tests in the dynamometer, experimental results were compared with numerical simulation and validated the proposed model. In conclusion, the proposed methodology for designing of VAD electromechanical actuator was considered satisfactory in terms of data consistency, feasibility, and reliability.


Assuntos
Coração Auxiliar , Desenho de Prótese , Fenômenos Eletromagnéticos , Humanos , Modelos Biológicos , Desenho de Prótese/métodos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA