Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834817

RESUMO

BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary ß and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.


Assuntos
Epilepsia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Genes vif , Neurônios/metabolismo , Membrana Celular/metabolismo , Epilepsia/genética , Cálcio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34454991

RESUMO

The hyperpolarization-activated cation current (Ih) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, Ih is activated by hyperpolarization negative to -55 mV and activating Ih produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces Ih amplitude in VTA DA neurons. Despite this reduction in Ih, the spontaneous firing of VTA DA cells after cocaine sensitization remained similar to control groups. Although the role of Ih in controlling VTA DA excitability is still poorly understood, our hypothesis is that Ih reduction could play a role of a homeostatic controller compensating for cocaine-induced change in excitability. Using in vivo single-unit extracellular electrophysiology in isoflurane anesthetized rats, we explored the contribution of Ih on spontaneous firing patterns of VTA DA neurons. A key feature of spontaneous excitability is bursting activity; bursting is defined as trains of two or more spikes occurring within a short interval and followed by a prolonged period of inactivity. Burst activity increases the reliability of information transfer. To elucidate the contribution of Ih to spontaneous firing patterns of VTA DA neurons, we locally infused an Ih blocker (ZD 7288, 8.3 µM) and evaluated its effect. Ih blockade significantly reduced firing rate, bursting frequency, and percent of spikes within a burst. In addition, Ih blockade significantly reduced acute cocaine-induced spontaneous firing rate, bursting frequency, and percent of spikes within a burst. Using whole-cell patch-clamp, we determine the progressive reduction of Ih after acute and chronic cocaine administration (15 mg/k.g intraperitoneally). Our data show a significant reduction (~25%) in Ih amplitude after 24 but not 2 h of acute cocaine administration. These results suggest that a progressive reduction of Ih could serve as a homeostatic regulator of cocaine-induced spontaneous firing patterns related to VTA DA excitability.


Assuntos
Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Eletrofisiologia , Masculino , Ratos
4.
Rev. bras. neurol ; 57(4): 23-30, out.-dez. 2021. ilus
Artigo em Inglês | LILACS | ID: biblio-1359223

RESUMO

There is a close association between sleep and epilepsy, and this literature review aims to raise issues regarding sleep time control, circadian and ultradian rhythms, epilepsy and its interaction with sleep and circadian rhythm, epilepsy and sleep disorders, and finally epilepsy management and medications. It is mentioned that sleep may provide a hypersynchronous state, as occurs in non-rapid eye movement sleep (NREM), and hyperexcitability, in cyclic alternating pattern (CAP), allowing more frequent interictal epileptiform abnormalities and seizures. In some epilepsy syndromes, seizures occur broadly / or entirely during sleep or on awakening, mainly in childhood, and maybe exacerbated in adults during the sleep or sleep-deprived, and there are the so-called Sleep-related epilepsies that are divided as sleep-associated, sleep-accentuated and arousal/awakening related. Sleep quality may be reduced in patients with epilepsy also due to nocturnal seizures or concomitant sleep disorders. Sleep disorders are common in patients with epilepsy and treatment of them mainly sleep-disordered breathing may improve seizure control. Besides, some parasomnias may mimic seizures, and also they can adversely affect the quality and quantity of sleep whereas antiepileptic therapy can have a negative or positive effect on sleep. Nocturnal epileptic seizures may be challenging to discern from parasomnias, in particular NREM parasomnias such as night terrors, sleepwalking and confusional arousals.


Há uma estreita associação entre sono e epilepsia, e esta revisão de literatura tem como objetivo levantar questões relacionadas ao controle do tempo do sono, ritmos circadianos e ultradianos, epilepsia e sua interação com sono e ritmo circadiano, epilepsia e transtornos do sono e, finalmente, o tratamento e medicamentos para epilepsia. Menciona-se que o sono pode proporcionar um estado hipersincrônico, como ocorre no sono "non-rapid eye movement" (NREM), e hiperexcitabilidade, no "cyclic alternating pattern" (CAP), permitindo anormalidades epileptiformes interictais e crises epilépticas mais frequentes. Em algumas síndromes epilépticas, as crises ocorrem ampla / ou inteiramente durante o sono ou despertar, principalmente na infância, e podem ser exacerbadas em adultos durante o sono ou privação de sono, e as chamadas epilepsias relacionadas ao sono se dividem em sono associadas, sono acentuadas e relacionadas com o despertar. A qualidade do sono pode ser reduzida em pacientes com epilepsia também devido a crises epilépticas noturnas ou transtornos do sono concomitantes. Esses são comuns em pacientes com epilepsia e o seu tratamento, principalmente dos transtornos respiratórios do sono, pode melhorar o controle das crises epilépticas. Além disso, algumas parassonias podem mimetizar crises epilépticas, e também elas podem afetar adversamente a qualidade e a quantidade do sono, enquanto a terapia antiepiléptica pode ter um efeito negativo ou positivo sobre o sono. Pode ser difícil discernir as crises epilépticas noturnas das parassonias, em particular das parassonias NREM, como terrores noturnos, crises de sonambulismo e despertares confusionais.


Assuntos
Humanos , Criança , Adulto , Privação do Sono , Transtornos do Sono-Vigília/etiologia , Epilepsia/complicações , Epilepsia/diagnóstico , Convulsões/etiologia , Transtornos do Sono-Vigília/complicações , Ritmo Circadiano , Epilepsia/tratamento farmacológico
5.
Front Neurosci ; 14: 319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362810

RESUMO

Recent studies have identified the Drosophila brain circuits involved in the sleep/wake switch and have pointed to the modulation of neuronal excitability as one of the underlying mechanisms triggering sleep need. In this study we aimed to explore the link between the homeostatic regulation of neuronal excitability and sleep behavior in the circadian circuit. For this purpose, we selected Pumilio (Pum), whose main function is to repress protein translation and has been linked to modulation of neuronal excitability during chronic patterns of altered neuronal activity. Here we explore the effects of Pum on sleep homeostasis in Drosophila melanogaster, which shares most of the major features of mammalian sleep homeostasis. Our evidence indicates that Pum is necessary for sleep rebound and that its effect is more pronounced during chronic sleep deprivation (84 h) than acute deprivation (12 h). Knockdown of pum, results in a reduction of sleep rebound during acute sleep deprivation and the complete abolishment of sleep rebound during chronic sleep deprivation. Based on these findings, we propose that Pum is a critical regulator of sleep homeostasis through neural adaptations triggered during sleep deprivation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31987027

RESUMO

Epilepsy is a neurological disorder that involves abnormal and recurrent neuronal discharges, producing epileptic seizures. Recently, it has been proposed that the Wnt signaling pathway is essential for the central nervous system development and function because it modulates important processes such as hippocampal neurogenesis, synaptic clefting, and mitochondrial regulation. Wnt/ß- catenin signaling regulates changes induced by epileptic seizures, including neuronal death. Several genetic studies associate Wnt/ß-catenin signaling with neuronal excitability and epileptic activity. Mutations and chromosomal defects underlying syndromic or inherited epileptic seizures have been identified. However, genetic factors underlying the susceptibility of an individual to develop epileptic seizures have not been fully studied yet. In this review, we describe the genes involved in neuronal excitability in epileptogenic zones dependent on the Wnt/ß-catenin pathway.


Assuntos
Epilepsia/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt/fisiologia , Hipocampo , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Neurogênese , Convulsões/metabolismo , beta Catenina/metabolismo
7.
Chem Biol Interact ; 315: 108890, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31678597

RESUMO

The monoterpenoid terpinen-4-ol (4TERP) is known to inhibit cell excitability, has low toxicity and important pharmacological activities, which are likely related to neural excitability, such as anti-inflammatory, antiepileptic and antinociceptive effects. However, the pharmacological characteristics and mechanisms underlying the effects of 4TERP on blockade of neural action potential are not completely elucidated. Since Na+ current (INa) through voltage-dependent Na+ channels (NaV) is a major mechanism for excitability, the present study investigated the pharmacological characteristics and mechanisms of the action of 4TERP on INa through NaV. For this aim, dissociated small neurons of dorsal root ganglia of adult rats were used for whole cell patch-clamp recordings. 4TERP concentration-dependently inhibits INa (IC50 0.8 ±â€¯0.3 mM; pharmacological efficacy 42.89 ±â€¯5.54%). 4TERP interfered with INa through a mechanism with various components, which includes predominantly channel pore block and sensitivity to frequency of use. In presence of 4TERP (3 mM), decreasing stimulation from 5 Hz to very low frequency (75 s of quiescence previously to stimulation) induced INa decrease to 65.17 ±â€¯5.86% of control. 4TERP also altered (left shift) voltage sensitivity of the steady state activation of NaV. Data are discussed aiming to interpret the importance of blockade of INa through NaV as participant of 4TERP-induced inhibition of membrane excitability.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Monoterpenos/farmacologia , Neurônios/efeitos dos fármacos , Terpenos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Gânglios Espinais/metabolismo , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Wistar
8.
Front Neurosci ; 14: 604583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519359

RESUMO

The rostromedial tegmental nucleus (RMTg) is a bilateral structure localized in the brainstem and comprise of mainly GABAergic neurons. One of the main functions of the RMTg is to regulate the activity of dopamine neurons of the mesoaccumbens pathway. Therefore, the RMTg has been proposed as a modulator of the reward system and adaptive behaviors associated to reward learning. The RMTg receives an important glutamatergic input from the lateral habenula. Also, it receives cholinergic inputs from the laterodorsal and pedunculopontine tegmental nuclei. Previously, it was reported that nicotine increases glutamate release, evoked by electric stimulation, in the RMTg nucleus. However, the mechanisms by which nicotine induces this effect were not explored. In the present work, we performed electrophysiological experiments in brainstem slices to study the effect of nicotine on spontaneous excitatory postsynaptic currents recorded from immunocytochemically identified RMTg neurons. Also, we used calcium imaging techniques to explore the effects of nicotine on multiple RMTg neurons simultaneously. We found that nicotine promotes the persistent release of glutamate through the activation of α7 nicotinic acetylcholine receptors present on glutamatergic afferents and by a mechanism involving calcium release from intracellular stores. Through these mechanisms, nicotine increases the excitability and synchronizes the activity of RMTg neurons. Our results suggest that the RMTg nucleus mediates the noxious effects of the nicotine, and it could be a potential therapeutic target against tobacco addiction.

9.
J Exp Biol ; 222(Pt 11)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31085603

RESUMO

South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EODs) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed of electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters, Gymnotus omarorum signals submission by interrupting its EOD (offs) and emitting transient high-rate barrages of low-amplitude discharges (chirps). Previous studies in Gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA) - of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resemble natural offs. Although in other species chirping is probably due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of the electrophysiological properties of pacemaker nucleus neurons in Gymnotiformes emerges as a novel putative mechanism endowing electromotor networks with higher functional versatility.


Assuntos
Comunicação Animal , Órgão Elétrico/fisiologia , Gimnotiformes/fisiologia , Comportamento Agonístico/fisiologia , Animais , Relógios Biológicos/fisiologia , Órgão Elétrico/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/farmacologia , Masculino , Neurônios/fisiologia , Receptores de Neurotransmissores/fisiologia , Vasotocina/farmacologia , Ácido gama-Aminobutírico/farmacologia
10.
Nutr Neurosci ; 22(3): 174-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28891432

RESUMO

OBJECTIVES: Ovarian hormones (OH) and early malnutrition may affect the developing brain, with repercussions on behavioral and excitability-dependent processes. However, the possible synergistic effects of both factors have not been analyzed. In this study, we investigated the effect of treatment in early life with OH and suckling among distinct litter sizes on recognition memory, anxiety behavior, and the excitability-dependent phenomenon known as cortical spreading depression (CSD). METHODS: Female Wistar rats were suckled under favorable and unfavorable lactation, corresponding to litters with 9 and 15 pups (L9 and L15 groups, respectively). From postnatal days (P) 7 to 21, the animals received 50 µg/kg of ß-estradiol or progesterone. From P80 to P84, we tested behavioral reactions. From P90 to P120, we analyzed CSD parameters. RESULTS: Compared with the corresponding L9 groups, the OH-treated L15 groups performed worse in recognition memory tasks. No intergroup difference in the anxiety parameters was observed. Compared with naive and vehicle-treated controls, OH-treated groups displayed higher CSD velocities and amplitudes and shorter CSD durations. DISCUSSION: Early treatment with OH facilitates recognition memory and CSD, and in association with unfavorable lactation (L15) impaired recognition memory, but not anxiety behavior, in the adult brain. OH treatment and L15 lactation condition seem to interact regarding OH action on memory, but not on CSD. Data suggest a long-lasting differential effect that might be related to the lasting hormonal action on brain excitability. We postulate and discuss the possibility that these findings may be implicated in human neurological diseases.


Assuntos
Encéfalo/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical , Estradiol/fisiologia , Lactação , Progesterona/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Animais Recém-Nascidos , Animais Lactentes , Ansiedade , Comportamento Animal , Estradiol/administração & dosagem , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Progesterona/administração & dosagem , Ratos Wistar
11.
Neurochem Int ; 120: 224-232, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30213635

RESUMO

Status epilepticus (SE) is a neurological condition that frequently induces severe neuronal injury in the hippocampus, subsequent epileptogenesis and pharmacoresistant spontaneous recurrent seizures (SRS). The repeated administration of LEV (a broad-spectrum antiepileptic drug) during the post-SE period does not prevent the subsequent development of SRS. However, this treatment reduces SE-induced neurodegeneration in the hippocampus. Conversely, propylparaben (PPB) is a widely used antimicrobial that blocks voltage-dependent Na+ channels, induces neuroprotection and reduces epileptiform activity in vitro. The present study attempted to determine if the neuroprotective effects induced by LEV are augmented when combined with a sub-effective dose of PPB. Long-term SE-induced consequences (hyperexcitability, high glutamate release, neuronal injury and volume loss) were evaluated in the hippocampus of rats. LEV alone, as well as combined with PPB, did not prevent the occurrence of SRS. However, animals treated with LEV plus PPB showed high prevalence of low frequency oscillations (0.1-4 Hz and 8-90 bands, p < 0.001) and low prevalence of high frequency activity (90-250 bands, p < 0.001) during the interictal period. In addition, these animals presented lower extracellular levels of glutamate, decreased rate of neurodegeneration and a similar hippocampal volume compared to the control conditions. This study's results suggest that LEV associated with PPB could represent a new therapeutic strategy to reduce long-term consequences induced by SE that facilitate pharmacoresistant SRS.


Assuntos
Hipocampo/efeitos dos fármacos , Levetiracetam/farmacologia , Parabenos/farmacologia , Estado Epiléptico/tratamento farmacológico , Tempo , Animais , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Lítio/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pilocarpina/farmacologia , Ratos Wistar , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente
12.
Front Neurosci ; 12: 345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904337

RESUMO

Recent studies, have shown that insulin increases extrasynaptic GABAA receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABAA receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABAA-mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABAA receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABAA receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABAA-mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.

13.
J Pain Res ; 11: 783-790, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731661

RESUMO

BACKGROUND: Nonspecific and delayed diagnosis of neurologic damage contributes to the development of neuropathies in patients with severe sepsis. The present study assessed the electrophysiologic parameters related to the excitability and conductibility of sciatic and vagus nerves during early stages of sepsis. MATERIALS AND METHODS: Twenty-four hours after sepsis induced by cecal ligation and puncture (CLP) model, sciatic and vagus nerves of septic (CLP group) and control (sham group) rats were removed, and selected electric stimulations were applied to measure the parameters of the first and second components of the compound action potential. The first component originated from fibers with motor and sensory functions (Types Aα and Aß fibers) with a large conduction velocity (70-120 m/s), and the second component originated from fibers (Type Aγ) with sensorial function. To evaluate the presence of sensorial alterations, the sensitivity to non-noxious mechanical stimuli was measured by using the von Frey test. Hematoxylin and eosin staining of the nerves was performed. RESULTS: We observed an increase of rheobase followed by a decrease in the first component amplitude and a higher paw withdrawal threshold in response to the application of von Frey filaments in sciatic nerves from the CLP group compared to the sham group. Differently, a decrease in rheobase and an increase in the first component amplitude of vagal C fibers from CLP group were registered. No significant morphologic alteration was observed. CONCLUSION: Our data showed that the electrophysiologic alterations in peripheral nerves vary with the fiber type and might be identified in the first 24 h of sepsis, before clinical signs of neuromuscular disorders.

14.
Neurotoxicol Teratol ; 68: 27-35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29715503

RESUMO

Despite serious health effects, volatile industrial products containing toluene are deliberately inhaled for their psychoactive actions, mainly among adolescents and young adults. Chronic toluene inhalation induces multiple alterations at the cellular and behavioral level; however, modifications of neuronal networks associated with the reward system after repeated toluene exposure are not thoroughly characterized. Here we used whole-cell recordings to determine the effects of repeated exposure to toluene (1000, 4000 or 8000 ppm for 30 min, twice a day, for ten days) on the neurophysiological properties of prelimbic layer 5 pyramidal neurons of the medial prefrontal cortex (mPFC) in adolescent male Wistar rats. Neurons from animals repeatedly exposed to toluene showed a concentration-dependent increase in action potential firing discharge. This increase was related to a reduction of the small-conductance calcium-activated potassium current (after-hyperpolarization current, IAHP) that controls the firing frequency of neurons. Likewise, toluene altered the kinetics of the action potential. The hyperexcitability seen in toluene-exposed animals was also associated with an increase in the glutamatergic spontaneous synaptic activity converging on mPFC neurons. In summary, repeated toluene exposure enhances the excitability of prelimbic layer 5 pyramidal neurons of the mPFC in adolescent rats.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Tolueno/toxicidade , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Cinurênico/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos
15.
Neurotoxicology ; 59: 110-120, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28174044

RESUMO

Propylparaben (PPB) induces cardioprotection after ischemia-reperfusion injury by inhibiting voltage-dependent Na+ channels. The present study focuses on investigating whether the i.p. application of 178mg/kg PPB after pilocarpine-induced status epilepticus (SE) reduces the acute and long-term consequences of seizure activity. Initially, we investigated the effects of a single administration of PPB after SE. Our results revealed that compared to rats receiving diazepam (DZP) plus vehicle after 2h of SE, animals receiving a single dose of PPB 1h after DZP injection presented 126% (p<0.001) lower extracellular levels of glutamate in the hippocampus. This effect was associated with an increased potency of low-frequency oscillations (0.1-13Hz bands, p<0.001), a reduced potency of 30-250Hz bands (p<0.001) and less neuronal damage in the hippocampus. The second experiment examined whether the subchronic administration of PPB during the post-SE period is able to prevent the long-term consequences of seizure activity. In comparison to animals that were treated subchronically with vehicle after SE, rats administered with PPB for 5 days presented lower hippocampal excitability and interictal glutamate release, astrogliosis, and neuroprotection in the dentate gyrus. Our data indicate that PPB, when applied after SE, can be used as a therapeutic strategy to reduce the consequences of seizure activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/uso terapêutico , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Parabenos/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Contagem de Células , Diazepam/uso terapêutico , Modelos Animais de Doenças , Estimulação Elétrica , Fluoresceínas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Agonistas Muscarínicos/toxicidade , Fosfopiruvato Hidratase/metabolismo , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
16.
Neurotoxicology ; 57: 183-193, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693446

RESUMO

Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (INa) amplitude, causing a hyperpolarizing shift in the inactivation curve of the INa, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (INaP). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , Parabenos/farmacologia , Conservantes Farmacêuticos/farmacologia , Canais de Sódio/metabolismo , Animais , Relação Dose-Resposta a Droga , Estimulação Elétrica , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
17.
Int J Mol Sci ; 17(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314332

RESUMO

In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca(2+) Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca(2+). By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors' response was discarded for the absence of transmembrane inward Ca(2+) movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.


Assuntos
Canais de Cálcio/metabolismo , Células Neuroepiteliais/metabolismo , Neurogênese , Neurônios Receptores Olfatórios/metabolismo , Esquizofrenia/metabolismo , Biomarcadores/metabolismo , Canais de Cálcio/genética , Células Cultivadas , Feminino , Humanos , Células Neuroepiteliais/citologia , Neurônios Receptores Olfatórios/citologia , Esquizofrenia/diagnóstico
18.
Eur J Neurosci ; 42(12): 3066-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26470005

RESUMO

Copper, an ion with many important metabolic functions, has also been proposed to have a role as modulator on neuronal function, mostly based on its effects on voltage- and neurotransmitter-gated conductance as well as on neurological symptoms of patients with altered copper homeostasis. Nevertheless, the mechanisms by which copper exerts its neuromodulatory effects have not been clearly established in a functional neuronal network. Using rat hippocampus slices as a neuronal network model, the effects of copper in the range of 10-100 nm were tested on the intrinsic, synaptic and network properties of the CA1 region. Most of the previously described effects of this cation were in the micromolar range of copper concentrations. The current results indicate that copper is a multifaceted neuromodulator, having effects that may be grouped into two categories: (i) activity enhancement, by modulating synaptic communication and action potential (AP) conductances; and (ii) temporal processing and correlation extraction, by improving reliability and depressing inhibition. Specifically it was found that copper hyperpolarizes AP firing threshold, enhances neuronal and network excitability, modifies CA3-CA1 pathway gain, enhances the frequency of spontaneous synaptic events, decreases inhibitory network activity, and improves AP timing reliability. Moreover, copper chelation by bathocuproine decreases spontaneous network spiking activity. These results allow the proposal that copper affects the network activity from cellular to circuit levels on a moment-by-moment basis, and should be considered a crucial functional component of hippocampal neuronal circuitry.


Assuntos
Cobre/metabolismo , Hipocampo/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Quelantes/farmacologia , Simulação por Computador , Cobre/administração & dosagem , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Microeletrodos , Modelos Neurológicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenantrolinas/farmacologia , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA