Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Chem X ; 22: 101347, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623503

RESUMO

Increased prevalence of diabetes prompts the development of foods with reduced starch digestibility. This study analyzed the impact of adding soluble dietary fiber (inulin-IN; polydextrose-PD) to baked gluten-starch matrices (7.5-13%) on microstructure formation and in vitro starch digestibility. IN and PD enhanced water-holding capacity, the hardness of baked matrices, and lowered water activity in the formulated matrices, potentially explaining the reduced starch gelatinization degree as IN or PD concentration increased. A maximum gelatinization decrease (26%) occurred in formulations with 13% IN. Micro-CT analysis showed a reduction in total and open porosity, which, along with the lower gelatinization degree, may account for the reduced in vitro starch digestibility. Samples with 13% IN exhibited a significantly lower rapidly available glucose fraction (8.56 g/100 g) and higher unavailable glucose fraction (87.76 g/100 g) compared to the control (34.85 g/100 g and 47.59 g/100 g, respectively). These findings suggest the potential for developing healthier, starch-rich baked foods with a reduced glycemic impact.

2.
Plants (Basel) ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807573

RESUMO

The common bean (Phaseolus vulgaris L.) pod wall is essential for seed formation and to protect seeds. To address the effect of water restriction on sugar metabolism in fruits differing in sink strength under light-dark cycles, we used plants of cv. OTI at 100% field capacity (FC) and at 50% FC over 10 days at the beginning of pod filling. Water restriction intensified the symptoms of leaf senescence. However, pods maintained a green color for several days longer than leaves did. In addition, the functionality of pods of the same raceme was anatomically demonstrated, and no differences were observed between water regimes. The glucose and starch concentrations were lower than those of sucrose, independent of pod wall size. Remarkably, the fructose concentration decreased only under water restriction. The cell wall invertase activity was twofold higher in the walls of small pods than in those of large ones in both water regimes; similar differences were not evident for cytosolic or vacuolar invertase. Using bioinformatics tools, six sequences of invertase genes were identified in the P. vulgaris genome. The PvINVCW4 protein sequence contains substitutions for conserved residues in the sucrose-binding site, while qPCR showed that transcript levels were induced in the walls of small pods under stress. The findings support a promising strategy for addressing sink strength under water restriction.

3.
Appl Biochem Biotechnol ; 194(3): 1327-1339, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34699041

RESUMO

Invertase from Aspergillus niger C28B25 was produced by solid-state fermentation (SSF). Fermented solids were used directly as a biocatalyst for batch and continuous hydrolysis of sucrose in a packed-bed reactor under different operational conditions with various temperatures, sucrose concentrations, and feed flow rates. The SSF allowed obtaining a biocatalyst with an invertase activity of 82.2 U/g db. The biocatalyst maintained its activity in the range of 40 to 70 °C for at least 70 h of continuous operation. In a 20-mL packed bed reactor, the highest hydrolysis rate (12.3 g/g db h) was obtained at 40 °C with 2 M sucrose. Continuous hydrolysis in 20-mL and 200-mL reactors at 60 °C led to sucrose hydrolysis above 60% (8.5 residence times) and above 55% (4.5 residence times), respectively. The auto-immobilised biocatalyst produced by SSF without recovery, purification, and immobilisation stages offers an economical alternative for developing accessible biocatalysts that can be applied in batch or continuous sucrose hydrolysis processes. This study shows the potential of biocatalyst production by SSF for other enzymatic systems.


Assuntos
Aspergillus niger
4.
Braz. J. Pharm. Sci. (Online) ; 58: e19484, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383994

RESUMO

Abstract Chronic type 2 diabetes mellitus (T2DM) and its associated diseases are major concern among human population and also responsible for significant mortality rate. Hence, the present study aims to evaluate and correlate the invertase inhibition, antioxidant activity and control against DFU causing bacterial pathogens by Pandanus odoratissimus flowers. Two dimensional preparative thin layer chromatography (2D PTLC) was adopted to purify the phenolic acid component and LC-MS2 was done to predict the phenolic acid structures. Standard spectrophotometry methods were adopted to investigate the in vitro invertase inhibitory and antioxidant (CUPRAC and ABTS) activities. Agar well diffusion and broth dilution assays were used to record the antibacterial property against DFU causing pathogens isolated from clinical samples. Statistical analyses were used to validate the experiments. A new and novel diferuloyl glycerate related phenolic acid (m/z 442) purified from PTLC eluate has recorded satisfactory cupric ion reducing power (ED50= 441.4±2.5 µg), moderate ABTS radical scavenging activity (IC50= 450.3±10 µg; 32.5±1.5%), and a near moderate, in vitro, invertase mixed type inhibition (24.5±4.5%; Ki: 400 µg). Similarly, bacterial growth inhibitory kinetics has showed a significant inhibition against E. coli and S. aureus.


Assuntos
Humanos , Masculino , Feminino , Técnicas In Vitro/métodos , Pé Diabético/patologia , Pandanaceae/efeitos adversos , Flores/classificação , beta-Frutofuranosidase/isolamento & purificação , Diabetes Mellitus Tipo 2/patologia , Espectrofotometria/métodos , Cromatografia em Camada Fina/instrumentação , Antioxidantes/efeitos adversos
5.
Food Technol Biotechnol ; 59(3): 306-313, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34759762

RESUMO

RESEARCH BACKGROUND: Microbial ß-fructofuranosidases are widely employed in food industry to produce inverted sugar or fructooligosaccharides. In this study, a newly isolated Aspergillus carbonarius PC-4 strain was used to optimize the ß-fructofuranosidase production in a cost-effective process and the sucrose hydrolysis was evaluated to produce inverted sugars. EXPERIMENTAL APPROACH: Optimization of nutritional components of culture medium was carried out using simplex lattice mixture design for 72 and 120 h at 28 °C. One-factor-at-a-time methodology was used to optimize the physicochemical parameters. Crude enzyme was used for sucrose hydrolysis at different concentrations. RESULTS AND CONCLUSIONS: The optimized conditions of enzyme production were achieved from cultivations containing pineapple crown waste (1.3%, m/V) and yeast extract (0.3%, m/V) after 72 h with an enzyme activity of 9.4 U/mL, obtaining R2=91.85%, R2 adjusted=85.06%, highest F-value (13.52) and low p-value (0.003). One-factor-at-a-time used for optimizing the physicochemical conditions showed optimum temperature (20 °C), pH (5.5), agitation (180 rpm) and time course (72 h) with a 3-fold increase of enzyme production. The invertase-induced sucrose hydrolysis showed the maximum yield (3.45 mmol of reducing sugars) using 10% of initial sucrose concentration. Higher sucrose concentrations caused the inhibition of invertase activity, possibly due to the saturation of substrate or formation of sucrose aggregates, making it difficult for the enzyme to access sucrose molecules within the created clusters. Therefore, a cost-effective method was developed for the invertase production using agroindustrial waste and the produced enzyme can be used efficiently for inverted sugar production at high sucrose concentration. NOVELTY AND SCIENTIFIC CONTRIBUTION: This study presents an efficient utilization of pineapple crown waste to produce invertase by a newly isolated Aspergillus carbonarius PC-4 strain. This enzyme exhibited a good potential for inverted sugar production at high initial sucrose concentration, which is interesting for industrial applications.

6.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826723

RESUMO

Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04-0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Sacarose/metabolismo , Aerobiose , Reatores Biológicos , Biotecnologia , Frutose/metabolismo , Glucose/metabolismo , Fenótipo , Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Plant Physiol Biochem ; 162: 185-195, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33684777

RESUMO

The physiology and biochemistry of young Opuntia spp. cladodes relate with their Crassulacean acid metabolism, which extends over the day-night cycle in four phases, is species-dependent and is affected by water availability. This study aimed to assess the interaction among species, time-of-day, and the soil water potential (ΨW) on biochemical and physiological characteristics of cladodes of Opuntia species. Three-week-old cladodes were harvested at 7:00 a.m. and 3:00 p.m. from plants with or without irrigation for 30 d (-0.17 and -5.72 MPa soil ΨW), from O. albicarpa, O. ficus-indica, O. hyptiacantha, O. megacantha, and O. streptacantha. The experimental design was a factorial 5 x 2 x 2 (species, sampling time and soil ΨW). The experimental unit was one cladode per plant, and six repetitions were evaluated. Total acids, glucose, fructose, sucrose, starch, total phenolics, free amino acids, and soluble proteins concentrations were evaluated, as well as acid invertase and neutral invertase activities. The interaction among species x soil ΨW and species x time of the day was significant (P ≤ 0.05) in all variables evaluated. An exception was the species x soil ΨW on starch concentration (P = 0.1827). The biochemical and physiological characteristics of Opuntia cladodes were modified by the time of the day and soil ΨW interaction, but most of the characteristics were positively or inversely affected depending on the species, frequently displaying a descending trend following O. streptacantha, O. hyptiacantha, O. megacantha, O. albicarpa and O. ficus-indica. The total acids, glucose, fructose, starch, soluble proteins, and free amino acids concentrations revealed that domestication significantly modifies C and N metabolism in Opuntia.


Assuntos
Opuntia , Fenóis , Extratos Vegetais , Solo , Água
8.
J Food Biochem ; 45(4): e13654, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33595123

RESUMO

The Cunninghamella echinulata PA3S12MM fungus is a great producer of invertases in a growth medium supplemented by apple peels. The enzyme was purified 4.5 times after two chromatographic processes, and it presented a relative molecular mass of 89.2 kDa. The invertase reached maximum activity at pH of 6 and at 60°C, in addition to presenting stability in alkaline pH and thermal activation at 50°C. The enzymatic activity increased in the presence of Mn2+ and dithiothreitol (DTT), while Cu2+ and Z2+ ions inhibited it. Also, DTT showed to protect enzymatic activity. The apparent values for Km , Vmáx , and Kcat for the sucrose hydrolysis were, respectively, 173.8 mmol/L, 908.7 mmol/L min-1 , and 1,388.79 s-1 . The carbohydrate content was of 83.13%. The invertase presented hydrolytic activity over different types of glycosidic bonds, such as α1 â†” 2ß (sucrose), α1 â†’ 4 (polygalacturonic acid), α1 â†’ 4 and α1 â†’ 2 (pectin), and α1 â†” 1 (trehalose), indicating that the enzyme is multifunctional. Thus, the biochemical properties showed by the C. echinulata PA3S12MM suggest a broad industrial application, such as in the biomass hydrolysis or in the food industry. PRACTICAL APPLICATIONS: Invertases are hydrolytic enzymes employed in several industrial sectors. Given their great importance for the economy and several industrial sectors, there is a growing interest in microorganisms producing this enzyme. The analysis of the biochemical properties of invertase in C. echinulata PA3S12MM suggest applications in the food industry. Due to its increased hydrolytic activity, the hydrolysis process of the sucrose may employ invertase for the production of invert sugar. The stability at alkaline pH suggests an application in the development of enzymatic electrodes for the quantification of sucrose in food and beverage. The multifunctional activity may work in the biomass hydrolysis or saccharification of by-products for the extraction of fermentable sugars. The high level of invertase N-linked glycosylation of invertase grants this enzyme thermal stability at high temperatures, in addition to resistance against the action of proteases, which are desirable characteristics for the application of this enzyme in industrial processes.


Assuntos
Cunninghamella , beta-Frutofuranosidase , Concentração de Íons de Hidrogênio , Temperatura
9.
J Exp Bot ; 72(7): 2525-2543, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367755

RESUMO

Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.


Assuntos
Frutas/fisiologia , Solanum lycopersicum , beta-Frutofuranosidase , Citosol , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sacarose , beta-Frutofuranosidase/genética
10.
Ciênc. rural (Online) ; 51(9): e20200725, 2021. tab
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1278902

RESUMO

ABSTRACT: This research evaluated the influence of blanching on osmotic dehydration in sucrose solutions of papaya of Formosa cultivar. The characterization of invertase present in the fruits was also done. Blanching possibly caused damages to the cellular structure resulting in higher water loss, sugar gain and, thus, effective diffusion coefficients than fresh papayas during osmotic dehydration. The invertase extracted from papaya pulp presented optimum temperature of 45 °C and optimum pH of 4.8. Considering the low production cost of papaya and the invertase characteristics, the fruit shows to be a potential source for the referred enzyme extraction.


RESUMO: O objetivo desse trabalho foi avaliar a influência do branqueamento na desidratação osmótica de mamão Formosa em soluções de sacarose. A caracterização da invertase presente nos frutos também foi realizada. O branqueamento possivelmente danificou a estrutura celular do vegetal resultando em maior perda de água, ganho de açúcar e, consequentemente, maior coeficiente de difusão do que os mamões frescos após a desidratação osmótica. A invertase extraída da polpa do mamão apresentou temperatura ótima de 45 °C e pH ótimo de 4.8. Considerando o baixo custo de produção do mamão e as características da invertase, essa fruta apresenta-se como potencial fonte de extração da enzima.

11.
Ciênc. rural (Online) ; 51(09): 1-7, 2021. tab
Artigo em Inglês | VETINDEX | ID: biblio-1480215

RESUMO

This research evaluated the influence of blanching on osmotic dehydration in sucrose solutions of papaya of Formosa cultivar. The characterization of invertase present in the fruits was also done. Blanching possibly caused damages to the cellular structure resulting in higher water loss, sugar gain and, thus, effective diffusion coefficients than fresh papayas during osmotic dehydration. The invertase extracted from papaya pulp presented optimum temperature of 45 °C and optimum pH of 4.8. Considering the low production cost of papaya and the invertase characteristics, the fruit shows to be a potential source for the referred enzyme extraction.


O objetivo desse trabalho foi avaliar a influência do branqueamento na desidratação osmótica de mamão Formosa em soluções de sacarose. A caracterização da invertase presente nos frutos também foi realizada. O branqueamento possivelmente danificou a estrutura celular do vegetal resultando em maior perda de água, ganho de açúcar e, consequentemente, maior coeficiente de difusão do que os mamões frescos após a desidratação osmótica. A invertase extraída da polpa do mamão apresentou temperatura ótima de 45 °C e pH ótimo de 4.8. Considerando o baixo custo de produção do mamão e as características da invertase, essa fruta apresenta-se como potencial fonte de extração da enzima.


Assuntos
Carica/fisiologia , Dessecação
12.
Ci. Rural ; 51(09): 1-7, 2021. tab
Artigo em Inglês | VETINDEX | ID: vti-32266

RESUMO

This research evaluated the influence of blanching on osmotic dehydration in sucrose solutions of papaya of Formosa cultivar. The characterization of invertase present in the fruits was also done. Blanching possibly caused damages to the cellular structure resulting in higher water loss, sugar gain and, thus, effective diffusion coefficients than fresh papayas during osmotic dehydration. The invertase extracted from papaya pulp presented optimum temperature of 45 °C and optimum pH of 4.8. Considering the low production cost of papaya and the invertase characteristics, the fruit shows to be a potential source for the referred enzyme extraction.(AU)


O objetivo desse trabalho foi avaliar a influência do branqueamento na desidratação osmótica de mamão Formosa em soluções de sacarose. A caracterização da invertase presente nos frutos também foi realizada. O branqueamento possivelmente danificou a estrutura celular do vegetal resultando em maior perda de água, ganho de açúcar e, consequentemente, maior coeficiente de difusão do que os mamões frescos após a desidratação osmótica. A invertase extraída da polpa do mamão apresentou temperatura ótima de 45 °C e pH ótimo de 4.8. Considerando o baixo custo de produção do mamão e as características da invertase, essa fruta apresenta-se como potencial fonte de extração da enzima.(AU)


Assuntos
Carica/fisiologia , Dessecação
13.
Biotechnol Appl Biochem ; 66(3): 419-425, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758071

RESUMO

Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the nutritional and technological properties of foods. The rhizosphere of inulin-accumulating plants from the Cerrado (Brazilian savanna) harbor fungi capable of synthesizing FOS from sucrose through the transfructosylating activity of ß-fructosyltransferases and/or ß-fructofuranosidases. Here, we investigated the ability of Penicillium janczewskii Zaleski CCIBt 3352, a fungus isolated from the rhizosphere of Chrysolaena obovata (Asteraceae), to produce FOS in a medium supplemented with sucrose concentrations of 30, 100, or 150 g L-1 . Hydrolytic activity on sucrose was observed in culture filtrates; however, at 150 g L-1 sucrose, the accumulation of 8 g L-1 1-kestose (inulin-type FOS) and 7.3 g L-1 neokestose (neolevan-type FOS) was observed, the latter being a type of FOS not commonly produced by filamentous fungi. In addition, minor amounts of four unidentified oligosaccharides, with a high degree of polymerization, were detected. The production of FOS was also observed in enzymatic assays, indicating the presence of extracellular enzymes with transfructosylating activity in the culture filtrates. Our findings demonstrate the feasibility of isolating promising microorganisms, for the production of FOS-synthesizing enzymes, from the rhizosphere of fructan-producing plants of the Brazilian Cerrado.


Assuntos
Frutanos/metabolismo , Inulina/metabolismo , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Penicillium/metabolismo , Asteraceae/microbiologia , Brasil , Frutanos/química , Inulina/química , Estrutura Molecular , Oligossacarídeos/metabolismo , Penicillium/química , Penicillium/crescimento & desenvolvimento
14.
Plant Physiol Biochem ; 136: 92-97, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30660100

RESUMO

Aluminum (Al) toxicity has been recognized to be a main limiting factor of crop productivity in acid soil. Al interacts with cell walls disrupting the functions of the plasma membrane and is associated with oxidative damage and mitochondrial dysfunction. Jatropha curcas L. (J. curcas) is a drought resistant plant, widely distributed around the world, with great economic and medicinal importance. Here we investigated the effects of Al on J. curcas mitochondrial function and cell viability, analyzing mitochondrial respiration, phenolic compounds, reducing sugars and cell viability in cultured J. curcas cells. The results showed that at 70 µM, Al limited mitochondrial respiration by inhibiting the alternative oxidase (AOX) pathway in the respiratory chain. An increased concentration of reducing sugars and reduced concentration of intracellular phenolic compounds was observed during respiratory inhibition. After inhibition, a time-dependent upregulation of AOX mRNA was observed followed by restoration of respiratory activity and reducing sugar concentrations. Cultured J. curcas cells were very resistant to Al-induced cell death. In addition, at 70 µM, Al also appeared as an inhibitor of cell wall invertase. In conclusion, Al tolerance in cultured J. curcas cells involves a inhibition of mitochondrial AOX pathway, which seems to start an oxidative burst to induce AOX upregulation, which in turn restores consumption of O2 and substrates. These data provide new insight into the signaling cascades that modulate the Al tolerance mechanism.


Assuntos
Alumínio/farmacologia , Jatropha/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Técnicas de Cultura de Células , Jatropha/enzimologia , Jatropha/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Consumo de Oxigênio/efeitos dos fármacos , Proteínas de Plantas/antagonistas & inibidores
15.
Braz. J. Microbiol. ; 49(4): 685-694, Oct.-Dec. 2018. graf
Artigo em Inglês | VETINDEX | ID: vti-738194

RESUMO

To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50 mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress.(AU)

16.
Braz. j. microbiol ; Braz. j. microbiol;49(4): 685-694, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974282

RESUMO

ABSTRACT To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50 mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress.


Assuntos
Carbono/metabolismo , Cloreto de Sódio/metabolismo , Vigna/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Cloreto de Sódio/análise , Actinobacteria/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Bradyrhizobium/fisiologia , Inoculantes Agrícolas/fisiologia , Vigna/crescimento & desenvolvimento , Vigna/microbiologia , Aminoácidos/metabolismo , Fixação de Nitrogênio
17.
Front Chem ; 6: 454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333971

RESUMO

Aqueous two-phase systems (ATPS) have been reported as an attractive biocompatible extraction system for recovery and purification of biological products. In this work, the implementation, characterization, and optimization (operational and economic) of invertase extraction from spent brewery yeast in a semi-automatized pilot plant using ATPS is reported. Gentian violet was used as tracer for the selection of phase composition through phase entrainment minimization. Yeast suspension was chosen as a complex cell matrix model for the recovery of the industrial relevant enzyme invertase. Flow rates of phases did not have an effect, given that a bottom continuous phase is given, while load of sample and number of agitators improved the recovery of the enzyme. The best combination of factors reached a recovery of 129.35 ± 2.76% and a purification factor of 4.98 ± 1.10 in the bottom phase of a PEG-Phosphate system, also resulting in the removal of inhibitor molecules increasing invertase activity as reported by several other authors. Then, an economic analysis was performed to study the production cost of invertase analyzing only the significant parameters for production. Results indicate that the parameters being analyzed only affect the production cost per enzymatic unit, while variations in the cost per batch are not significant. Moreover, only the sample load is significant, which, combined with operational optimization results, gives the same optimal result for operation, maximizing recovery yield (15% of sample load and 1 static mixer). Overall res ults of these case studies show continuous pilot-scale ATPS as a viable and reproducible extraction/purification system for high added-value biological compounds.

18.
Front Plant Sci ; 9: 1031, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174673

RESUMO

Psittacanthus calyculatus is a hemiparasitic plant that infects a wide range of trees. Mainly the biology reproduction of this mistletoe lies in bright colored flower development. Furthermore, it uses the nectar secretion as the only reward to engage different flower visitors. We investigated the physiological mechanisms of the flower phenology per hour and per day to analyze the spatial-temporal patterns of the nectar secretion, Cell Wall Invertase Activity (key enzyme in the quality of nectar), nectar chemistry, volatile organic compounds (VOCs) emission, synthesis of carotenoids and frequency of floral visitors. Flowers lasted 4 days, total nectar was loaded just before the anthesis and the secretion was maintained over day 1 and 2, decreased on day 3, and stopped on day 4. The diurnal nectar secretion dynamic per hour on day 1 and 2 showed similar patterns with high production on the morning and a decrease in the afternoon, the secretion declined on day 3 and ceased on day 4. On the other hand, CWIN activity per day was less before the anthesis and increased on day 1 and 2, this enzymatic activity decreased on the old flower phenology. Moreover, diurnal CWIN activities showed different patterns in the morning, noon, and lastly in the afternoon. Nectar chemistry varied significantly throughout of the flower lifetime, sucrose decreased along the flower phenology increasing glucose and fructose. Amino acids showed the prevalence of proline and oxo-proline, both increased on the day 1 and diminished in subsequent old flower stages. The spatial VOCs emission showed the presence of 11 compounds being ß-ocimene the main volatile; its release increased on day 1 and remained constant in the flower lifetime. Lutein, lycopene, and ß-carotene were concentrated in old stages of the flowers. In field, the most frequent flower visitors were the hummingbirds that usually foraging in all phenologic flower stage and their foraging events decreased with the phenological flower lifetimes. The results showed that these traits presented by P. calyculatus flowers are able to engage and manipulate the behavior of flower visitors and contribute to the reproduction of the parasitic plant.

19.
Prep Biochem Biotechnol ; 48(6): 506-513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29932819

RESUMO

Invertases are used for several purposes; one among these is the production of fructooligosaccharides. The aim of this study was to biochemically characterize invertase from industrial Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa isolated from Cerrado soil. The optimum pH and temperature were 4.0 and 70 °C for Rhodotorula mucilaginosa invertase and 4.5 and 50 °C for Saccharomyces cerevisiae invertase. The pH and thermal stability from 3.0 to 10.5 and 75 °C for R. mucilaginosa invertase, respectively. The pH and thermal stability for S. cerevisiae CAT-1 invertase from 3.0 to 7.0, and 50 °C, respectively. Both enzymes showed good catalytic activity with 10% of ethanol in reaction mixture. The hydrolysis by invertases occurs predominantly when sucrose concentrations are ≤5%. On the other hand, the increase in the concentration of sucrose to levels above 10% results in the highest transferase activity, reaching about 13.3 g/L of nystose by S. cerevisiae invertase and 12.6 g/L by R. mucilaginosa invertase. The results demonstrate the high structural stability of the enzyme produced by R. mucilaginosa, which is an extremely interesting feature that would enable the application of this enzyme in industrial processes.


Assuntos
Oligossacarídeos/biossíntese , Rhodotorula/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , beta-Frutofuranosidase/biossíntese , beta-Frutofuranosidase/metabolismo , Catálise , Estabilidade Enzimática , Etanol/metabolismo , Indústria Alimentícia/métodos , Concentração de Íons de Hidrogênio , Hidrólise , Indústrias , Especificidade da Espécie , Sacarose/metabolismo , Temperatura , beta-Frutofuranosidase/química
20.
Braz J Microbiol ; 49(4): 685-694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29703526

RESUMO

To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Cloreto de Sódio/metabolismo , Vigna/metabolismo , Actinobacteria/fisiologia , Inoculantes Agrícolas/fisiologia , Aminoácidos/metabolismo , Bradyrhizobium/fisiologia , Fixação de Nitrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Estresse Salino , Cloreto de Sódio/análise , Microbiologia do Solo , Vigna/crescimento & desenvolvimento , Vigna/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA