Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 111(9): 1705-1722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178328

RESUMO

Cartilage damage caused by trauma or osteoarthritis is a common joint disease that can increase the social and economic burden in society. Due to its avascular characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Hydrogels have been developed into one of the most suitable biomaterials for the regeneration of cartilage because of its characteristics such as high-water absorption, biodegradation, porosity, and biocompatibility similar to natural extracellular matrix. Therefore, the present review article presents a conceptual framework that summarizes the anatomical, molecular structure and biochemical properties of hyaline cartilage located in long bones: articular cartilage and growth plate. Moreover, the importance of preparation and application of hyaluronic acid - gelatin hydrogels for cartilage tissue engineering are included. Hydrogels possess benefits of stimulating the production of Agc1, Col2α1-IIa, and SOX9, molecules important for the synthesis and composition of the extracellular matrix of cartilage. Accordingly, they are believed to be promising biomaterials of therapeutic alternatives to treat cartilage damage.


Assuntos
Cartilagem Articular , Cartilagem Hialina , Humanos , Cartilagem Hialina/metabolismo , Ácido Hialurônico/química , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Estrutura Molecular , Condrócitos , Cartilagem Articular/metabolismo , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Alicerces Teciduais
2.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297906

RESUMO

In this work, hybrid hydrogels were synthesized with the inclusion of two types of clay materials that are considered industrial waste: red mud (RM) and ferrosilicomanganese fines (FeSiMn). These solid waste materials were characterized by studying their particle size and chemical composition, which are two key variables for their application in the synthesis of hybrid hydrogels. The morphology imaged by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showed, in the case of RM, heterogeneous size and shape particles, with 73% of the particles having lengths of less than 5 µm. On the other hand, FeSiMn had particles with a circular morphology of nanometric sizes. Regarding the synthesis of the hybrid hydrogels, it was determined that the incorporation of small percentages (0.1%) of the inorganic phases improved the capacity of the materials to absorb water (swelling indices of 1678% and 1597% for the RM and FeSiMn hydrogels, respectively) compared to the conventional polyacrylamide hydrogel (1119%). An improvement in Vickers microhardness and storage modulus (G') was also observed: the hybrid with 10% RM presented a G', 50 times higher than conventional hydrogel. The results show the merit of RM and FeSiMn in improving the properties of hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA