RESUMO
Autonomous sensory meridian response (ASMR) describes the experience of a pleasant body sensation accompanied by a feeling of well-being and relaxation in response to specific audiovisual stimuli, such as whispers and personal attention. Previous work suggests a relationship between this experience with the processing of affective and body states; however, no research has explored differences in interoception between people experiencing ASMR and those who do not. We hypothesized that the ASMR experience is based on interoception processing. To test this, we assessed group differences across different dimensions of interoception: Interoceptive sensibility (IS), measured using the multidimensional assessment of interoceptive awareness (MAIA); Interoceptive accuracy score (IAS), measured by calculating performance in a heartbeat counting task (HCT), and the electrophysiological index of interoception, the heartbeat evoked potential (HEP), which was calculated during the HCT and an ASMR tingle reporting task (ASMR-TRT). Our results showed that IS and IAS, dimensions requiring conscious awareness, showed no differences between groups. However, HEP amplitude was larger in the ASMR group in both tasks. We concluded that the ASMR experience is based on an unconscious interoceptive mechanism, reflected by HEP, where exteroceptive social-affective stimuli are integrated to represent a body state of positive affective feelings and relaxation, as has been described for affective touch. The relevance of this finding relies on that interoceptive function, body regulation, and emotional/affective experiences are fundamental for well-being, and the relationship between ASMR and interoception opens the way to future research exploring the causal relationship between them and their potential clinical applications.
Assuntos
Potenciais Evocados , Frequência Cardíaca , Interocepção , Prazer , Prazer/fisiologia , Interocepção/fisiologia , Humanos , Masculino , Feminino , Adulto Jovem , AdultoRESUMO
The heart and brain are reciprocally interconnected and engage in two-way communication for homeostatic regulation. Epilepsy is considered a network disease that also affects the autonomic nervous system (ANS). The neurovisceral integration model (NVM) proposes that cardiac vagal tone, indexed by heart rate variability (HRV), can indicate the functional integrity of cognitive neural networks. ANS activity and the pattern of oscillatory EEG activity covary during the transition of arousal states and associations between cortical and autonomic activity are reflected by HRV. Cognitive dysfunction is one of the common comorbidities that occur in epilepsy, including memory, attention, and processing difficulties. Recent studies have shown evidence for the active involvement of alpha activity in cognitive processes through its active role in the control of neural excitability in the cortex through top-down modulation of cortical networks. In the present pilot study, we evaluated the association between resting EEG oscillatory behavior and ANS function in patients with refractory epilepsy. Our results show: (1) In patients with refractory epilepsy, there is a strong positive correlation between HRV and the power of cortical oscillatory cortical activity in all studied EEG bands (delta, theta, alpha, and beta) in all regions of interest in both hemispheres, the opposite pattern found in controls which had low or negative correlation between these variables; (2) higher heartbeat evoked potential amplitudes in patients with refractory epilepsy than in controls. Taken together, these results point to a significant alteration in heart-brain interaction in patients with refractory epilepsy.
RESUMO
Heart-brain integration dynamics are critical for interoception (i.e. the sensing of body signals). In this unprecedented longitudinal study, we assessed neurocognitive markers of interoception in patients who underwent orthotopic heart transplants and matched healthy controls. Patients were assessed longitudinally before surgery (T1), a few months later (T2) and a year after (T3). We assessed behavioural (heartbeat detection) and electrophysiological (heartbeat evoked potential) markers of interoception. Heartbeat detection task revealed that pre-surgery (T1) interoception was similar between patients and controls. However, patients were outperformed by controls after heart transplant (T2), but no such differences were observed in the follow-up analysis (T3). Neurophysiologically, although heartbeat evoked potential analyses revealed no differences between groups before the surgery (T1), reduced amplitudes of this event-related potential were found for the patients in the two post-transplant stages (T2, T3). All these significant effects persisted after covariation with different cardiological measures. In sum, this study brings new insights into the adaptive properties of brain-heart pathways.
RESUMO
Multiple sclerosis (MS) patients present several alterations related to sensing of bodily signals. However, no specific neurocognitive impairment has yet been proposed as a core deficit underlying such symptoms. We aimed to determine whether MS patients present changes in interoception-that is, the monitoring of autonomic bodily information-a process that might be related to various bodily dysfunctions. We performed two studies in 34 relapsing-remitting, early-stage MS patients and 46 controls matched for gender, age, and education. In Study 1, we evaluated the heartbeat-evoked potential (HEP), a cortical signature of interoception, via a 128-channel EEG system during a heartbeat detection task including an exteroceptive and an interoceptive condition. Then, we obtained whole-brain MRI recordings. In Study 2, participants underwent fMRI recordings during two resting-state conditions: mind wandering and interoception. In Study 1, controls exhibited greater HEP modulation during the interoceptive condition than the exteroceptive one, but no systematic differences between conditions emerged in MS patients. Patients presented atrophy in the left insula, the posterior part of the right insula, and the right anterior cingulate cortex, with abnormal associations between neurophysiological and neuroanatomical patterns. In Study 2, controls showed higher functional connectivity and degree for the interoceptive state compared with mind wandering; however, this pattern was absent in patients, who nonetheless presented greater connectivity and degree than controls during mind wandering. MS patients were characterized by atypical multimodal brain signatures of interoception. This finding opens a new agenda to examine the role of inner-signal monitoring in the body symptomatology of MS.
Assuntos
Córtex Cerebral/fisiopatologia , Conectoma/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Frequência Cardíaca/fisiologia , Interocepção/fisiologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Adulto , Atrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologiaRESUMO
Interoception, the perception of our body internal signals, plays a key role in maintaining homeostasis and guiding our behavior. Sometimes, we become aware of our body signals and use them in planning and strategic thinking. Here, we show behavioral and neural dissociations between learning to follow one's own heartbeat and metacognitive awareness of one's performance, in a heartbeat-tapping task performed before and after auditory feedback. The electroencephalography amplitude of the heartbeat-evoked potential in interoceptive learners, that is, participants whose accuracy of tapping to their heartbeat improved after auditory feedback, was higher compared with non-learners. However, an increase in gamma phase synchrony (30-45 Hz) after the heartbeat auditory feedback was present only in those participants showing agreement between objective interoceptive performance and metacognitive awareness. Source localization in a group of participants and direct cortical recordings in a single patient identified a network hub for interoceptive learning in the insular cortex. In summary, interoceptive learning may be mediated by the right insular response to the heartbeat, whereas metacognitive awareness of learning may be mediated by widespread cortical synchronization patterns.