Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500705

RESUMO

An electrochemical sensor for simultaneous determination of Benserazide (BEZ) and levodopa (L-dopa) was successfully developed using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotube and nitrogen-doped titanium dioxide nanoparticles (GCE/MWCNT/N-TiO2). Cyclic voltammetry and square wave voltammetry were employed to investigate the electrochemical behavior of different working electrodes and analytes. In comparison with unmodified GCE, the modified electrode exhibited better electrocatalytic activity towards BEZ and L-dopa and was efficient in providing a satisfactory separation for oxidation peaks, with a potential difference of 140 mV clearly allows the simultaneous determination of these compounds. Under the optimized conditions, linear ranges of 2.0-20.0 and 2.0-70.0 µmol L-1 were obtained for BEZ and L-dopa, respectively, with a limit of detection of 1.6 µmol L-1 for BEZ and 2.0 µmol L-1 for L-dopa. The method was applied in simultaneous determination of the analytes in pharmaceutical samples, and the accuracy was attested by comparison with HPLC-DAD as the reference method, with a relative error lower than 4.0%.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Levodopa , Benserazida , Eletrodos , Oxirredução , Técnicas Eletroquímicas/métodos
2.
Mikrochim Acta ; 189(8): 269, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788785

RESUMO

The synthesis and characterization of a novel titania/silica hybrid xerogel subsequently modified with 4-methylpyridine (4-Pic), named TiSi4Pic+Cl- is reported. The physicochemical, structural and thermal properties of TiSi4Pic+Cl- were characterized using several techniques. Anchoring cobalt(II) phthalocyanine (CoTsPc) in TiSi4Pic+Cl- showed greater electroanalytical sensitivity over other sensors built with these materials. A novel electroanalytical method was developed to quantify the noxious biocide pentachlorophenol (PCP) for environmental monitoring. The peak current intensity increased linearly with the analyte concentration in the range between 0.99 and 4.21 µmol L-1, based on the oxidation process (at + 0.81 V, vs. Ag/AgCl) of differential pulse voltammetry (DPV). The estimated limit of detection (LOD) was 29 nmol L-1. Recovery tests in environmental samples showed a PCP concentration of 2.05 ± 0.03 µmol L-1 (n = 3). The method was statistically validated by comparing the PCP concentrations with those obtained by molecular absorption spectrometry and high-performance liquid chromatography-diode array detection (HPLC-DAD). At a 95% confidence level, no difference between the results was found, therefore confirming the excellent accuracy of the proposed method.


Assuntos
Pentaclorofenol , Cobalto/química , Eletrodos , Indóis , Isoindóis , Dióxido de Silício , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA