Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Physiol ; 109(10): 1710-1727, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39207362

RESUMO

High-intensity interval training (HIIT) has shown significant results in addressing adiposity and risk factors associated with obesity. However, there are no studies that investigate the effects of HIIT on contractility and intracellular Ca2+ handling. The purpose of this study was to explore the impact of HIIT on cardiomyocyte contractile function and intracellular Ca2+ handling in rats in which obesity was induced by a saturated high-fat diet (HFD). Male Wistar rats were initially randomized into a standard diet and a HFD group. The experimental protocol spanned 23 weeks, comprising the induction and maintenance of obesity (15 weeks) followed by HIIT treatment (8 weeks). Performance was assessed using the maximum oxygen consumption test ( V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Evaluation encompassed cardiac, adipose and skeletal muscle histology, as well as contractility and intracellular Ca2+ handling. HIIT resulted in a reduction in visceral area, an increase in V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ , and an augmentation of gastrocnemius fibre diameter in obese subjects. Additionally, HIIT led to a decrease in collagen fraction, an increase in percentage shortening, and a reduction in systolic Ca2+/percentage shortening and systolic Ca2+/maximum shortening rates. HIIT induces physiological cardiac remodelling, enhancing the contractile function of cardiomyocytes and improving myofilament sensitivity to Ca2+ in the context of obesity. This approach not only enhances cardiorespiratory and physical performance but also reduces visceral area and prevents interstitial fibrosis.


Assuntos
Cálcio , Treinamento Intervalado de Alta Intensidade , Contração Miocárdica , Miócitos Cardíacos , Miofibrilas , Obesidade , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Obesidade/fisiopatologia , Obesidade/metabolismo , Obesidade/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Treinamento Intervalado de Alta Intensidade/métodos , Contração Miocárdica/fisiologia , Miofibrilas/metabolismo , Dieta Hiperlipídica , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia
2.
Arq. bras. cardiol ; Arq. bras. cardiol;121(7): e20230602, jun.2024. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1563933

RESUMO

Resumo Fundamento A remodelação adversa dos vasos pulmonares eleva a pressão pulmonar e provoca hipertensão arterial pulmonar (HAP). A HAP resulta em aumento da pós-carga do ventrículo direito (VD), causando hipertrofia ventricular e consequente insuficiência cardíaca. Não existe um tratamento específico para o remodelamento desadaptativo do VD secundário à HAP. Objetivos Este estudo tem como objetivo explorar duas abordagens terapêuticas, o suco de uva (SU) e os hormônios tireoidianos (HT), no tratamento do estresse oxidativo induzido pela HAP e nas alterações funcionais cardíacas. Métodos Parâmetros ecocardiográficos relacionados à resistência dos vasos pulmonares (relação TA/TE), contratilidade do VD (ESPAT) e função diastólica do VD (relação dos picos E/A) foram avaliados. Além disso, foram medidos ROS totais, peroxidação lipídica, enzimas antioxidantes, proteínas de manipulação de cálcio, expressão de proteínas pró-oxidantes e antioxidantes. Valores de p<0,05 foram considerados estatisticamente significativos. Resultados Ambos os tratamentos, com SU e HT, demonstraram uma redução na resistência pulmonar (~22%), além de melhorias na ESPAT (inotropismo ~11%) e na relação TA/TE (~26%) (p<0,05). Não houve alterações entre os grupos na relação do pico de E/A. Embora ROS e TBARS não tenham sido estatisticamente significativos, os tratamentos com SU e HT diminuíram os níveis de xantina oxidase (~49%) e normalizaram a expressão de HSP70 e proteínas de manipulação de cálcio (p<0,05). No entanto, apenas o tratamento com HT melhorou a função diastólica (~50%) e aumentou o imunoconteúdo de NRF2 (~48%) (p<0,05). Conclusões Até onde sabemos, este estudo é pioneiro ao mostrar que o HT administrado em conjunto com o SU promoveu melhorias funcionais e bioquímicas em um modelo de HAP. Além disso, nossos dados sugerem que os tratamentos com SU e HT se mostraram cardioprotetores, sejam combinados ou não, e exibiram seus benefícios ao modular o estresse oxidativo e as proteínas de manipulação do cálcio.


Abstract Background Adverse remodeling of lung vessels elevates pulmonary pressure and provokes pulmonary arterial hypertension (PAH). PAH results in increased right ventricle (RV) afterload, causing ventricular hypertrophy and the onset of heart failure. There is no specific treatment for maladaptive RV remodeling secondary to PAH. Objectives This study aims to explore two therapeutic approaches, grape juice (GJ) and thyroid hormones (TH), on PAH-induced oxidative stress and cardiac functional changes. Methods Parameters of echocardiography related to lung vessel resistance (AT/ET ratio), RV contractility (TAPSE), and RV diastolic function (E/A peaks ratio) were evaluated. Also, total ROS, lipid peroxidation, antioxidant enzymes, calcium handling proteins, pro-oxidant and antioxidant protein expression were measured. Values of p<0.05 were considered statistically significant. Results Both GJ and TH treatments demonstrated reductions in pulmonary resistance (~22%) and improvements in TAPSE (inotropism ~11%) and AT/ET ratio (~26%) (p<0.05). There were no changes amongst groups regarding the E/A peak ratio. Although ROS and TBARS were not statistically significant, GJ and TH treatments decreased xanthine oxidase (~49%) levels and normalized HSP70 and calcium handling protein expression (p<0.05). However, only TH treatment ameliorated diastolic function (~50%) and augmented NRF2 immunocontent (~48%) (p<0.05). Conclusions To the best of our knowledge, this study stands as a pioneer in showing that TH administered together with GJ promoted functional and biochemical improvements in a PAH model. Moreover, our data suggest that GJ and TH treatments were cardioprotective, combined or not, and exhibited their beneficial effects by modulating oxidative stress and calcium-handling proteins.

3.
Mol Cell Endocrinol ; 589: 112236, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608803

RESUMO

INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.


Assuntos
Proteínas de Ligação ao Cálcio , Ratos Wistar , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Proteínas de Ligação ao Cálcio/metabolismo , Interleucina-6/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Sacarose/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569680

RESUMO

Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Ratos , Animais , Cálcio/metabolismo , Ratos Wistar , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio da Dieta/metabolismo , Estenose da Valva Aórtica/metabolismo , Exercício Físico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Front Bioinform ; 3: 1137815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521316

RESUMO

One of the main topics of cardiovascular research is the study of calcium (Ca2+) handling, as even small changes in Ca2+ concentration can alter cell functionality (Bers, Annu Rev Physiol, 2014, 76, 107-127). Ionic calcium (Ca2+) plays the role of a second messenger in eukaryotic cells, associated with cellular functions such as cell cycle regulation, transport, motility, gene expression, and regulation. The use of fluorometric techniques in isolated cells loaded with Ca2+-sensitive fluorescent probes allows quantitative measurement of dynamic events occurring in living, functioning cells. The Cardiomyocytes Images Analyzer Python (CardIAP) application addresses the need to analyze and retrieve information from confocal microscopy images systematically, accurately, and rapidly. Here we present CardIAP, an open-source tool developed entirely in Python, freely available and useable in an interactive web application. In addition, CardIAP can be used as a standalone Python library and freely installed via PIP, making it easy to integrate into biomedical imaging pipelines. The images that can be generated in the study of the heart have the particularity of requiring both spatial and temporal analysis. CardIAP aims to open the field of cardiomyocytes and intact hearts image processing. The improvement in the extraction of information from the images will allow optimizing the usage of resources and animals. With CardIAP, users can run the analysis to both, the complete image, and portions of it in an easy way, and replicate it on a series of images. This analysis provides users with information on the spatial and temporal changes in calcium releases and characterizes them. The web application also allows users to extract calcium dynamics data in downloadable tables, simplifying the calculation of alternation and discordance indices and their classification. CardIAP aims to provide a tool that could assist biomedical researchers in studying the underlying mechanisms of anomalous calcium release phenomena.

6.
J Diabetes Complications ; 37(8): 108559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37480704

RESUMO

AIMS: To investigate whether the obesity associated to T2DM presented cardiomyocyte myocardial contractility dysfunction due to damage in Ca2+ handling, concomitantly with increased biomarkers of oxidative stress. METHODS: Male Wistar rats were randomized into two groups: control (C): fed with standard diet; and obese (Ob) that fed a saturated high-fat. After the characterization of obesity (12 weeks), the Ob animals were submitted to T2DM induction with a single dose of intraperitoneal (i.p.) injection of streptozotocin (30 mg/kg). Thus, remained Ob rats that were characterized as to the presence (T2DMOb; n = 8) and/or absence (Ob; n = 10) of T2DM. Cardiac remodeling was measured by post-mortem morphological, isolated cardiomyocyte contractile function, as well as by intracellular Ca2+-handling analysis. RESULTS: T2DMOb presented a significant reduction of all fat pads, total body fat and adiposity index. T2DMOb group presented a significant increase in protein carbonylation and superoxide dismutase (SOD) activity, respectively. T2DMOb promoted elevations in fractional shortening (15.6 %) and time to 50 % shortening (5.8 %), respectively. Time to 50 % Ca2+ decay was prolonged in T2DMOb, suggesting a possible impairment in Ca2+recapture and/or removal. CONCLUSION: Type 2 diabetes mellitus in obesity promotes prolongation of cardiomyocyte contractile function with protein carbonylation damage and impaired Ca2+ handling.


Assuntos
Diabetes Mellitus Tipo 2 , Miócitos Cardíacos , Animais , Masculino , Ratos , Cálcio , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Obesidade/metabolismo , Carbonilação Proteica , Ratos Wistar
7.
J Mol Cell Cardiol ; 180: 33-43, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149124

RESUMO

ß-adrenergic (ß-AR) signaling is essential for the adaptation of the heart to exercise and stress. Chronic stress leads to the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase D (PKD). Unlike CaMKII, the effects of PKD on excitation-contraction coupling (ECC) remain unclear. To elucidate the mechanisms of PKD-dependent ECC regulation, we used hearts from cardiac-specific PKD1 knockout (PKD1 cKO) mice and wild-type (WT) littermates. We measured calcium transients (CaT), Ca2+ sparks, contraction and L-type Ca2+ current in paced cardiomyocytes under acute ß-AR stimulation with isoproterenol (ISO; 100 nM). Sarcoplasmic reticulum (SR) Ca2+ load was assessed by rapid caffeine (10 mM) induced Ca2+ release. Expression and phosphorylation of ECC proteins phospholambam (PLB), troponin I (TnI), ryanodine receptor (RyR), sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated by western blotting. At baseline, CaT amplitude and decay tau, Ca2+ spark frequency, SR Ca2+ load, L-type Ca2+ current, contractility, and expression and phosphorylation of ECC protein were all similar in PKD1 cKO vs. WT. However, PKD1 cKO cardiomyocytes presented a diminished ISO response vs. WT with less increase in CaT amplitude, slower [Ca2+]i decline, lower Ca2+ spark rate and lower RyR phosphorylation, but with similar SR Ca2+ load, L-type Ca2+ current, contraction and phosphorylation of PLB and TnI. We infer that the presence of PKD1 allows full cardiomyocyte ß-adrenergic responsiveness by allowing optimal enhancement in SR Ca2+ uptake and RyR sensitivity, but not altering L-type Ca2+ current, TnI phosphorylation or contractile response. Further studies are necessary to elucidate the specific mechanisms by which PKD1 is regulating RyR sensitivity. We conclude that the presence of basal PKD1 activity in cardiac ventricular myocytes contributes to normal ß-adrenergic responses in Ca2+ handling.


Assuntos
Adrenérgicos , Agonistas Adrenérgicos beta , Miócitos Cardíacos , Proteína Quinase C , Animais , Camundongos , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Quinase C/genética
8.
Front Physiol ; 14: 1106662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846332

RESUMO

A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36803268

RESUMO

Fipronil is widely used as a broad-spectrum insecticide in agriculture, urban environments, and veterinary medicine. Fipronil can enter aquatic ecosystems and spread to sediment and organic matter, representing a risk to non-target species. This study aimed to evaluate the effects of short-term (96 h) exposure to a low and realistic concentration of sediment-associated fipronil (4.2 µg.kg-1 of Regent® 800 WG) on myocardial contractility of armored catfish Hypostomus regain, a benthic fish species. Fipronil exposure induced increased inotropism and acceleration of contractile kinetics, although no alterations in the relative ventricular mass were observed. This better cardiac function was associated with an elevated expression and/or function of the Na+/Ca2+ exchanger and its marked contribution to contraction and relaxation, probably due to a stress-induced adrenergic stimulation. Ventricle strips of exposed fish also exhibited a faster relaxation and a higher cardiac pumping capacity, indicating that armored catfish were able to perform cardiac adjustments to face the exposure. However, a high energetic cost to maintain an increased cardiac performance can make fish more susceptible to other stressors, impairing developmental processes and/or survival. These findings highlight the need for regulations of emerging contaminants, such as fipronil, to ensure adequate protection of the aquatic system.


Assuntos
Peixes-Gato , Animais , Ecossistema , Coração , Pirazóis/toxicidade
10.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216382

RESUMO

BACKGROUND: Acute renal failure (ARF) following renal ischemia-reperfusion (I/R) injury is considered a relevant risk factor for cardiac damage, but the underlying mechanisms, particularly those triggered at cardiomyocyte level, are unknown. METHODS: We examined intracellular Ca2+ dynamics in adult ventricular cardiomyocytes isolated from C57BL/6 mice 7 or 15 days following unilateral renal I/R. RESULTS: After 7 days of I/R, the cell contraction was significantly lower in cardiomyocytes compared to sham-treated mice. It was accompanied by a significant decrease in both systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transients decay. Moreover, the incidence of pro-arrhythmic events, measured as the number of Ca2+ sparks, waves or automatic Ca2+ transients, was greater in cardiomyocytes from mice 7 days after I/R than from sham-treated mice. Ca2+ mishandling related to systolic Ca2+ transients and contraction were recovered to sham values 15 days after I/R, but Ca2+ sparks frequency and arrhythmic events remained elevated. CONCLUSIONS: Renal I/R injury causes a cardiomyocyte Ca2+ cycle dysfunction at medium (contraction-relaxation dysfunction) and long term (Ca2+ leak), after 7 and 15 days of renal reperfusion, respectively.


Assuntos
Injúria Renal Aguda/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Cálcio da Dieta/metabolismo , Retículo Endoplasmático/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Reperfusão/métodos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
11.
Arq. bras. cardiol ; Arq. bras. cardiol;118(2): 463-475, 2022. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1364328

RESUMO

Resumo Fundamento O remodelamento cardíaco patológico se caracteriza por disfunção diastólica e sistólica, levando à insuficiência cardíaca. Neste contexto, o cenário disfuncional do trânsito de cálcio miocárdico (Ca2+) tem sido pouco estudado. Um modelo experimental de estenose aórtica tem sido extensamente utilizado para aprimorar os conhecimentos sobre os principais mecanismos do remodelamento patológico cardíaco. Objetivo Entender o processo disfuncional dos principais componentes responsáveis pelo equilíbrio do cálcio miocárdico e sua influência sobre a função cardíaca na insuficiência cardíaca induzida pela estenose aórtica. Métodos Ratos Wistar de 21 dias de idade foram distribuídos em dois grupos: controle (placebo; n=28) e estenose aórtica (EaO; n=18). A função cardíaca foi analisada com o ecocardiograma, músculo papilar isolado e cardiomiócitos isolados. No ensaio do músculo papilar, SERCA2a e a atividade do canal de Ca2+ do tipo L foram avaliados. O ensaio de cardiomiócitos isolados avaliou o trânsito de cálcio. A expressão proteica da proteínas do trânsito de cálcio foi analisada com o western blot. Os resultados foram estatisticamente significativos quando p <0,05. Resultados Os músculos papilares e cardiomiócitos dos corações no grupo EaO demonstraram falhas mecânicas. Os ratos com EaO apresentaram menor tempo de pico do Ca2+, menor sensibilidade das miofibrilas do Ca2+, prejuízos nos processos de entrada e recaptura de cálcio pelo retículo sarcoplasmático, bem como disfunção no canal de cálcio do tipo L (CCTL). Além disso, os animais com EaO apresentaram maior expressão de SERCA2a, CCTL e trocador de Na+/Ca2+. Conclusão Insuficiência cardíaca sistólica e diastólica devido à estenose aórtica supravalvular acarretou comprometimento da entrada de Ca2+ celular e inibição da recaptura de cálcio pelo retículo sarcoplasmático devido à disfunção no CCTL e SERCA2a, assim como mudanças no trânsito de cálcio e na expressão das principais proteínas responsáveis pela homeostase de Ca2+ celular.


Abstract Background Maladaptive cardiac remodelling is characterized by diastolic and systolic dysfunction, culminating in heart failure. In this context, the dysfunctional scenario of cardiac calcium (Ca2+) handling has been poorly studied. An experimental model of aortic stenosis has been extensively used to improve knowledge about the key mechanisms of cardiac pathologic remodelling. Objective To understand the dysfunctional process of the major components responsible for Ca2+ balance and its influence on cardiac function in heart failure induced by aortic stenosis. Methods Male 21-day-old Wistar rats were distributed into two groups: control (sham; n= 28) and aortic stenosis (AoS; n= 18). Cardiac function was analysed by echocardiogram, isolated papillary muscle, and isolated cardiomyocytes. In the papillary muscle assay, SERCA2a and L-type Ca2+ channel activity was evaluated. The isolated cardiomyocyte assay evaluated Ca2+ handling. Ca2+ handling protein expression was analysed by western blot. Statistical significance was set at p <0.05. Results Papillary muscles and cardiomyocytes from AoS hearts displayed mechanical malfunction. AoS rats presented a slower time to the Ca2+ peak, reduced Ca2+ myofilament sensitivity, impaired sarcoplasmic reticulum Ca2+ influx and reuptake ability, and SERCA2a and L-type calcium channel (LTCC) dysfunction. Moreover, AoS animals presented increased expression of SERCA2a, LTCCs, and the Na+/Ca2+ exchanger. Conclusion Systolic and diastolic heart failure due to supravalvular aortic stenosis was paralleled by impairment of cellular Ca2+ influx and inhibition of sarcoplasmic reticulum Ca2+ reuptake due to LTCC and SERCA2a dysfunction, as well as changes in Ca2+ handling and expression of the major proteins responsible for cellular Ca2+ homeostasis.


Assuntos
Animais , Masculino , Ratos , Estenose da Valva Aórtica/patologia , Insuficiência Cardíaca/patologia , Músculos Papilares , Cálcio/metabolismo , Ratos Wistar , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Contração Miocárdica/fisiologia
12.
J Bioenerg Biomembr ; 53(2): 109-118, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33585958

RESUMO

Microglial activation involves both fragmentation of the mitochondrial network and changes in cellular Ca2+ homeostasis, but possible modifications in mitochondrial calcium uptake have never been described in this context. Here we report that activated microglial BV-2 cells have impaired mitochondrial calcium uptake, including lower calcium retention capacity and calcium uptake rates. These changes were not dependent on altered expression of the mitochondrial calcium uniporter. Respiratory capacity and the inner membrane potential, key determinants of mitochondrial calcium uptake, are both decreased in activated microglial BV-2 cells. Modified mitochondrial calcium uptake correlates with impaired cellular calcium signaling, including reduced ER calcium stores, and decreased replenishment by store operated calcium entry (SOCE). Induction of mitochondrial fragmentation through Mfn2 knockdown in control cells mimicked this effect, while inhibiting LPS-induced mitochondrial fragmentation by a dominant negative form of Drp1 prevented it. Overall, our results show that mitochondrial fragmentation induced by LPS promotes altered Ca2+ homeostasis in microglial cells, a new aspect of microglial activation that could be a key feature in the inflammatory role of these cells.


Assuntos
Cálcio/metabolismo , Homeostase/imunologia , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Humanos
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(10): e10669, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285654

RESUMO

Mechanisms involved in cardiac function and calcium (Ca2+) handling in obese-resistant (OR) rats are still poorly determined. We tested the hypothesis that unsaturated high-fat diet (HFD) promotes myocardial dysfunction in OR rats, which it is related to Ca2+ handling. In addition, we questioned whether exercise training (ET) becomes a therapeutic strategy. Male Wistar rats (n=80) were randomized to standard or HFD diets for 20 weeks. The rats were redistributed for the absence or presence of ET and OR: control (C; n=12), control + ET (CET; n=14), obese-resistant (OR; n=9), and obese-resistant + ET (ORET; n=10). Trained rats were subjected to aerobic training protocol with progressive intensity (55-70% of the maximum running speed) and duration (15 to 60 min/day) for 12 weeks. Nutritional, metabolic, and cardiovascular parameters were determined. Cardiac function and Ca2+ handling tests were performed in isolated left ventricle (LV) papillary muscle. OR rats showed cardiac atrophy with reduced collagen levels, but there was myocardial dysfunction. ET was efficient in improving most parameters of body composition. However, the mechanical properties and Ca2+ handling from isolated papillary muscle were similar among groups. Aerobic ET does not promote morphological and cardiac functional adaptation under the condition of OR.


Assuntos
Animais , Masculino , Ratos , Condicionamento Físico Animal , Obesidade , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Coração
14.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(4): e10138, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153533

RESUMO

Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and sarcolemmal Na+/Ca2+ exchanger (NCX1) structures are involved in heart cell Ca2+ homeostasis. Previous studies have shown discrepancies in their function and expression in heart failure. The goal of this study was to evaluate heart function and hypertrophied muscle Ca2+-handling protein behavior under pressure overload. Twenty male Wistar rats were divided into two groups: Aortic stenosis (AoS), induced by a clip placed at the beginning of the aorta, and Control (Sham). After 18 weeks, heart function and structure were evaluated by echocardiogram. Myocardial function was analyzed by isolated papillary muscle (IPM) at basal condition and Ca2+ protein functions were evaluated after post-pause contraction and blockage with cyclopiazonic acid in IPM. Ca2+-handling protein expression was studied by western blot (WB). Echocardiogram showed that AoS caused concentric hypertrophy with enhanced ejection fraction and diastolic dysfunction inferred by dilated left atrium and increased relative wall thickness. IPM study showed developed tension was the same in both groups. AoS showed increased stiffness revealed by enhanced resting tension, and changes in Ca2+ homeostasis shown by calcium elevation and SERCA2a blockage maneuvers. WB revealed decreased NCX1, SERCA2a, and phosphorylated phospholambam (PLB) on serine-16 in AoS. AoS had left ventricular hypertrophy and diastolic dysfunction compared to Sham; this could be related to our findings regarding calcium homeostasis behavior: deficit in NCX1, SERCA2a, and phosphorylated PLB on serine-16.


Assuntos
Animais , Masculino , Ratos , Cálcio/metabolismo , Remodelação Ventricular , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Homeostase
15.
Int J Med Sci ; 17(12): 1819-1832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714085

RESUMO

Resistance training (RT) improves the cardiomyocyte calcium (Ca2+) cycling during excitation-contraction coupling. However, the role of RT in cardiomyocyte contractile function associated with Ca2+ handling in obesity is unclear. Wistar rats were distributed into four groups: control, sedentary obese, control plus RT, and obesity plus RT. The 10-wk RT protocol was used (4-5 vertical ladder climbs, 60-second interval, 3× a week, 50-100% of maximum load). Metabolic, hormonal, cardiovascular and biochemical parameters were determined. Reduced leptin levels, epididymal, retroperitoneal and visceral fat pads, lower body fat, and adiposity index were observed in RT. Obesity promoted elevation of collagen, but RT did not promote modifications of LV collagen in ObRT. RT induced elevation in maximum rates of contraction and relaxation, and reduction of time to 50% relaxation. ObRT group did not present improvement in the cardiomyocyte contractile function in comparison to Ob group. Reduced cardiac PLB serine16 phosphorylation (pPLB Ser16) and pPLB Ser16/PLB ratio with no alterations in sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban (PLB) expression were observed in Ob groups. Resistance training improved body composition reduced fat pads and plasma leptin levels but did not promote positive alterations in cardiomyocyte contractile function, Ca2+ handling and phospholamban phosphorylation.


Assuntos
Gordura Intra-Abdominal/metabolismo , Contração Miocárdica/fisiologia , Obesidade/terapia , Treinamento Resistido , Animais , Cálcio/metabolismo , Humanos , Gordura Intra-Abdominal/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Obesidade/fisiopatologia , Condicionamento Físico Animal , Ratos
16.
J Bioenerg Biomembr ; 52(1): 1-15, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853754

RESUMO

Schizophrenia etiology is unknown, nevertheless imbalances occurring in an acute psychotic episode are important to its development, such as alterations in cellular energetic state, REDOX homeostasis and intracellular Ca2+ management, all of which are controlled primarily by mitochondria. However, mitochondrial function was always evaluated singularly, in the presence of specific respiratory substrates, without considering the plurality of the electron transport system. In this study, mitochondrial function was analyzed under conditions of isolated or multiple respiratory substrates using brain mitochondria isolated from MK-801-exposed mice. Results showed a high H2O2 production in the presence of pyruvate/malate, with no change in oxygen consumption. In the condition of multiple substrates, however, this effect is lost. The analysis of Ca2+ retention capacity revealed a significant change in the uptake kinetics of this ion by mitochondria in MK-801-exposed animals. Futhermore, when mitochondria were exposed to calcium, a total loss of oxidative phosphorylation and an impressive increase in H2O2 production were observed in the condition of multiple substrates. There was no alteration in the activity of the antioxidant enzymes analyzed. The data demonstrate for the first time, in an animal model of psychosis, two important aspects (1) mitochondria may compensate deficiencies in a single mitochondrial complex when they oxidize several substrates simultaneously, (2) Ca2+ handling is compromised in MK-801-exposed mice, resulting in a loss of phosphorylative capacity and an increase in H2O2 production. These data favor the hypothesis that disruption of key physiological roles of mitochondria may be a trigger in acute psychosis and, consequently, schizophrenia.


Assuntos
Encéfalo/patologia , Cálcio/efeitos adversos , Mitocôndrias/patologia , Transtornos Psicóticos/complicações , Doença Aguda , Animais , Humanos , Masculino , Camundongos
17.
Front Physiol ; 11: 601313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574764

RESUMO

The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 µM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.

18.
Clin Exp Pharmacol Physiol ; 46(12): 1151-1165, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31410879

RESUMO

Maternal salt overload programs cardiovascular and renal alterations in the offspring. However, beneficial and harmful effects of high dose vitamin E supplementation have been described in humans and animals. We investigated the hypothesis as to whether cardiac and renal alterations can be programmed by gestational salt overload, and can become further modified during lactation and after weaning. Male Wistar rats were used, being the offspring of mothers that drank either tap water or 0.3 mol/L NaCl for 20 days before and during pregnancy. α-Tocopherol (0.35 g/kg) was administered to mothers daily during lactation or to their offspring for 3 weeks post-weaning. Systolic blood pressure (tcSBP) was measured in juvenile rats aged 210 days. The response of mean arterial pressure (MAP) and heart rate (HR) to intravenous infusion of angiotensin II (Ang II) was also examined. Left ventricle plasma membrane (PMCA) and sarcoplasmic reticulum Ca2+ -ATPase (SERCA) activities, and certain parameters of renal function, were measured. Maternal saline programmed for increased body mass and kidney mass/body mass ratio, increased tcSBP, increased mean arterial pressure and heart rate with anomalous response to infused Ang II. In the heart, saline increased PMCA and α-Tocopherol per se increased PMCA/SERCA. In the kidney, the most remarkable result was the silent saline programming of CrCl , which was sensitized for a sharp decrease after α-Tocopherol. In conclusion, the combination of maternal saline overload and high α-Tocopherol immediately after birth leads to simultaneous cardiovascular and renal alterations in the young offspring, like those encountered in type V cardiorenal syndrome.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Lactação/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Cloreto de Sódio na Dieta/efeitos adversos , alfa-Tocoferol/administração & dosagem , Animais , Esquema de Medicação , Ingestão de Alimentos/fisiologia , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Coração/fisiologia , Rim/fisiologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar , Fatores Sexuais , Cloreto de Sódio na Dieta/administração & dosagem , Desmame , alfa-Tocoferol/farmacologia
19.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(6): e8085, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001538

RESUMO

Obesity is often associated with changes in cardiac function; however, the mechanisms responsible for functional abnormalities have not yet been fully clarified. Considering the lack of information regarding high-saturated-fat diet-induced obesity, heart function, and the proteins involved in myocardial calcium (Ca2+) handling, the aim of this study was to test the hypothesis that this dietary model of obesity leads to cardiac dysfunction resulting from alterations in the regulatory proteins of intracellular Ca2+ homeostasis. Male Wistar rats were distributed into two groups: control (C, n=18; standard diet) and obese (Ob, n=19; high-saturated-fat diet), which were fed for 33 weeks. Cardiac structure and function were evaluated using echocardiographic and isolated papillary muscle analyses. Myocardial protein expressions of sarcoplasmic reticulum Ca2+-ATPase, phospholamban (PLB), PLB serine-16 phosphorylation, PLB threonine-17 phosphorylation, ryanodine receptor, calsequestrin, Na+/Ca2+ exchanger, and L-type Ca2+ channel were assessed by western blot. Obese rats presented 104% increase in the adiposity index (C: 4.5±1.4 vs Ob: 9.2±1.5%) and obesity-related comorbidities compared to control rats. The left atrium diameter (C: 5.0±0.4 vs Ob: 5.5±0.5 mm) and posterior wall shortening velocity (C: 36.7±3.4 vs Ob: 41.8±3.8 mm/s) were higher in the obese group than in the control. The papillary muscle function was similar between the groups at baseline and after inotropic and lusitropic maneuvers. Obesity did not lead to changes in myocardial Ca2+ handling proteins expression. In conclusion, the hypothesis was not confirmed, since the high-saturated-fat diet-induced obese rats did not present cardiac dysfunction or impaired intracellular Ca2+ handling proteins.


Assuntos
Animais , Masculino , Ratos , Cálcio/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Dieta Hiperlipídica/efeitos adversos , Coração/fisiopatologia , Obesidade/fisiopatologia , Pressão Sanguínea/fisiologia , Ecocardiografia , Ratos Wistar , Modelos Animais de Doenças
20.
Life Sci ; 208: 239-245, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040952

RESUMO

AIMS: Hypertension is a highly prevalent disease that has been correlated to severe organ damage and mortality. However, the role of androgens in hypertension is controversial. The aim of this study was to evaluate the cardiac effects of the nandrolone decanoate (NDL) in male SHR. MAIN METHODS: At 12 weeks of age, male SHR rats were separated into three groups: Control (CON), Nandrolone 10 mg/kg twice weekly (NDL), and NDL plus Enalapril 10 mg/kg/day (NDL-E) groups. The animals were treated for 4 weeks. Haemodynamic parameters were acquired through ventricular catheter implantation. The left ventricle was stained with haematoxylin/eosin or picrosirius red. Western blot analysis of TNF-α, ACE, AT1R, ß1-AR, PLB, p-PLBser16 and SERCA2a was performed. KEY FINDINGS: Nandrolone increased hypertension in SHR rats and enalapril reduced blood pressure to values below those of the control. NDL increased +dP/dtmax, -dP/dtmax and cardiac hypertrophy, which were prevented in the NDL-E group. Cardiac collagen deposition was increased in the NDL group, with this effect being attenuated by enalapril in NDL-E animals. TNF-α, ACE, AT1R and ß1-AR proteins were increased in the NDL, and enalapril decreased them, except for TNF-α. The ratio p-PLBser16/PLB revealed an increase after nandrolone, which was prevented in the NDL-E group. The SERCA2a expression protein and SERCA2a/PLB were increased in NDL animals, which did not occur in the NDL-E group. SIGNIFICANCE: Nandrolone has distinct effects on cardiac function and remodelling in male SHR, altering the hypertension development process in the heart through modulation of calcium handling proteins and the renin-angiotensin system.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Contração Muscular/efeitos dos fármacos , Nandrolona/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Disfunção Ventricular Esquerda/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Anabolizantes/farmacologia , Animais , Frequência Cardíaca , Masculino , Ratos , Ratos Endogâmicos SHR , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA