Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770360

RESUMO

In the last decade, the application of nanoscale zero-valent iron (nZVI) has garnered great attention as an adsorbent due to its low cost, non-toxicity, high porosity, and BET-specific surface area. In particular, the immobilization of nZVI particles onto inorganic and organic substrates (nanocomposites) decreased its agglomeration, allowing them to be effective and achieve greater adsorption of pollutants than pristine nanoparticles (NPs). Although nZVI began to be used around 2004 to remove pollutants, there are no comprehensive review studies about phosphate removal from aquatic systems to date. For this reason, this study will show different types of nZVI, pristine nZVI, and its nanocomposites, that exist on the market, how factors such as pH solution, oxygen, temperature, doses of adsorbent, initial phosphate concentration, and interferents affect phosphate adsorption capacity, and mechanisms involved in phosphate removal. We determined that nanocomposites did not always have higher phosphate adsorption than pristine nZVI particles. Moreover, phosphate can be removed by nZVI-based nanoadsorbents through electrostatic attraction, ion exchange, chemisorption, reduction, complexation, hydrogen bonding, and precipitation mechanisms. Using the partition coefficient (PC) values, we found that sepiolite-nZVI is the most effective nanoadsorbent that exists to remove phosphate from aqueous systems. We suggest future studies need to quantify the PC values for nZVI-based nanoadsorbents as well as ought to investigate their phosphate removal efficiency under natural environmental conditions.

2.
Environ Sci Pollut Res Int ; 29(14): 20221-20233, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34725756

RESUMO

A novel hybrid nanomaterial, nanoscale zero-valent iron (nZVI)-grafted imogolite nanotubes (Imo), was synthesized via a fast and straightforward chemical procedure. The as-obtained nanomaterial (Imo-nZVI) was characterized using transmission electron microscopy (TEM), electrophoretic mobility (EM), and vibrating sample magnetometry (VSM). The prepared Imo-nZVI was superparamagnetic at room temperature and could be easily separated by an external magnetic field. Sorption batch experiments were performed for single- and multicomponent systems and demonstrated that Hg2+ and Pb2+ could be quantitatively adsorbed at pH 3.0. For multicomponent systems, maximum adsorption capacities of 61.6 mg·g-1 and 76.9 mg·g-1 were obtained for Hg2+ and Pb2+ respectively. It was observed that the functional groups in Imo-nZVI interact preferentially with analytes according to the Misono softness parameter. The higher performance of Imo-nZVI compared with Imo and nZVI is related to the increased number of adsorption sites in the functionalized nanomaterial. The sorption equilibrium data obeyed the Langmuir model, while kinetic studies demonstrated that the sorption processes of Hg2+ and Pb2+ followed the pseudo-second-order model. This study suggests that the Imo-nZVI composite can be used as a promising sorbent to provide a simple and fast separation method to remove Hg and Pb ions from contaminated water.


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Ferro/química , Cinética , Chumbo , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 417: 126078, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992923

RESUMO

This work aims to shed light on the scale-up a combined electrokinetic soil flushing process (EKSF) with permeable reactive barriers (PRB) for the treatment of soil spiked with clopyralid. To do this, remediation tests at lab (3.45 L), bench (175 L) and pilot (1400 L) scales have been carried out. The PRB selected was made of soil merged with particles of zero valent iron (ZVI) and granular activated carbon (GAC). Results show that PRB-EKSF involved electrokinetic transport and dehalogenation as the main mechanisms, while adsorption on GAC was not as relevant as initially expected. Clopyralid was not detected in the electrolyte wells and only in the pilot scale, significant amounts of clopyralid remained in the soil after 600 h of operation. Picolinic acid was the main dehalogenated product detected in the soil after treatment and mobilized by electro-osmosis, mostly to the cathodic well. The transport of volatile compounds into the atmosphere was promoted at pilot scale because of the larger soil surface exposed to the atmosphere and the electrical heating caused by ohmic losses and the larger interelectrode gap.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Carvão Vegetal , Solo , Poluentes do Solo/análise
4.
Sci Total Environ ; 783: 146991, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865131

RESUMO

Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L-1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Diclofenaco , Hospitais , Ibuprofeno , Micro-Ondas , Tecnologia , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 401: 123275, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32629350

RESUMO

The efficiency of nanoscale zero-valent iron (nZVI) for the recalcitrant organic pollutants degradation has been frequently reported. However, some disadvantages such as low hydraulic conductivity, rapid passivation and consequent loss of reactivity have motivated researchers to study immobilized forms. In this work, calcium alginate beads incorporated with nZVI were prepared, characterized and applied in a catalytic ozonation system of Reactive Red 195 dye (RR195). In order to avoid shearing the calcium alginate beads, an Air lift reactor operated with Air/O3 cycles in an 8 mg L-1 concentration was used. The RR195 treatability tests conducted with a dye concentration of 25 mg L-1, 50 g L-1 of nZVI-Alg beads and an Air/O3 feed flow of 1 L min-1, revealed significant process efficiency, which was not limited only to the dye discoloration. Total discoloration levels were observed in 30 min of treatment and reductions in 97 % of organic matter in 90 min of treatment, measured through the chemical oxygen demand. The typical absorptions of aromatic compounds reduction (λmax =290 nm) and the acute toxicity reduction (Artemia Saline bioassay), contribute to the Alg-nZVI/O3 system potential for the application in the treatment of liquid effluents contaminated with dyes.

6.
Environ Sci Pollut Res Int ; 27(18): 22214-22224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124285

RESUMO

Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and human health. As an alternative treatment, persulfate (PS)-driven advanced oxidation technologies have gained growing attention for removing these pollutants. In this study, the degradation of propylparaben (PrP) by UVA- and zero-valent iron (ZVI)-activated persulfate was investigated. The effects of initial PS concentration ([PS]0) and irradiance or ZVI concentration were explored using the Doehlert experimental design. For the UVA-activated system, the specific PrP degradation rate (k) and percent removal were consistently higher for increasing [PS]0 and irradiance, varying in the ranges 0.0053-0.0192 min-1 and 37.9-77.3%, respectively. In contrast, extremely fast PrP degradation was achieved through the ZVI/PS process (0.3304 < k < 0.9212 min-1), with removal percentages above 97.5%; in this case, paraben degradation was hindered for a ZVI dosage beyond 40 mg L-1. Regarding toxicity, ECOSAR predictions suggest that the degradation products elucidated by LC-MS/MS are less toxic than PrP toward fish, daphnid, and green algae. In addition, both processes showed to be strongly dependent on the water matrix, being ZVI/PS more impacted for a MBR effluent, although its performance was much better than that exhibited by the UVA-driven process (t1/2 of 65.4 and 276.1 min, respectively).


Assuntos
Ferro , Poluentes Químicos da Água , Cromatografia Líquida , Oxirredução , Parabenos , Espectrometria de Massas em Tandem
7.
Artigo em Inglês | MEDLINE | ID: mdl-32033384

RESUMO

This study investigated the reduction of hexavalent chromium (Cr(VI)) in a clayey residual soil using nanoscale zero-valent iron (nZVI). Five different ratios between nZVI and Cr(VI) were tested in batch tests (1000/11; 1000/23; 1000/35; 1000/70, and 1000/140 mg/mg) with the soil. With the selected proportion resulting best efficiency, the column tests were conducted, with molded specimens of 5 cm in diameter and 5 cm in height, with different nZVI injection pressures (10, 30, and 100 kPa). The soil was contaminated with 800 mg/kg of Cr(VI). The Cr(VI) and Cr(III) analyses were performed following the USEPA 3060A and USEPA 7196A standards. The results show that the reduction of Cr(VI) is dependent on the ratio between nZVI and Cr(VI), reaching 98% of efficiency. In column tests, the pressure of 30 kPa was the most efficient. As pressure increased, contaminant leaching increased. The permeability decreased over time due to the gradual increase in filtration and formation of oxyhydroxides, limiting nZVI mobility. Overall, nZVI is efficient for soil remediation with Cr(VI), but the injection process can spread the contaminated if not properly controlled during in situ application.


Assuntos
Cromo/química , Cromo/toxicidade , Argila/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanotecnologia/métodos , Poluentes do Solo/toxicidade
8.
J Hazard Mater ; 379: 120695, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279310

RESUMO

This study focused on investigating reactor performance, simultaneous methanogeneis and denitrifiction (SMD) process for treatment of a sulfate plus organic sulfur - rich 3,4,5-Triethoxybenzaldehyde (TMBA) manufacturing wastewater with variable COD/TSO42- (total sulfate) ratio by micro-electric field- zero-valent-iron (ZVI) UASB for 390 days. The initial COD/TSO42- was set as 1.42, 0.9 and 0.5, respectively by manually introducing sulfate. The experimental results indicated that micro-electric field- zero-valent-iron UASB was an attractive integrated option for satisfactory COD removal, nitrate reduction and a reasonable methane yield rate even at COD/TSO42- as low as 0.9. Further declining the COD/TSO42- to 0.5 can result in a moderate inhibition of SMD process. The behavior of organic S release was not inhibited over the entire experimental period. Thus, surprisingly, sulfate concentration in the effluent was always higher than that in the influent. In comparison with sludge sample at Day-1, sludge at Day-390 was characterized with high abundant Tissierella Soehngenia, Anaerolinaceae and Brevundimonas diminuta, which played critical role in promising performance in COD abatement. The relatively low abundance of sulfate reducing bacteria (SRB) such as Desulfobulbus and Desulfomicrobium can explain the lower sulfate reduction efficiency in term of high concentration of sulfate plus released from organic S-rich compounds.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Ferro/química , Metano/biossíntese , Sulfatos/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anaerobiose , Benzaldeídos/química , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Águas Residuárias/química , Águas Residuárias/microbiologia
9.
Electron. j. biotechnol ; Electron. j. biotechnol;39: 8-14, may. 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1051568

RESUMO

BACKGROUND: Bioremoval of phenolic compounds using fungi and bacteria has been studied extensively; nevertheless, trinitrophenol bioremediation using modified Oscillatoria cyanobacteria has been barely studied in the literature. RESULTS: Among the effective parameters of bioremediation, algal concentration (3.18 g·L−1 ), trinitrophenol concentration (1301 mg·L−1 ), and reaction time (3.75 d) were screened by statistical analysis. Oscillatoria cyanobacteria were modified by starch/nZVI and starch/graphene oxide in a bubble column bioreactor, and their bioremoval efficiency was investigated. Modifiers, namely, starch/zero-valent iron and starch/GO, increased trinitrophenol bioremoval efficiency by more than 10% and 12%, respectively, as compared to the use of Oscillatoria cyanobacteria alone. Conclusions: It was found that starch/nano zero-valent iron and starch/GO could be applied to improve the removal rate of phenolic compounds from the aqueous solution.


Assuntos
Picratos/metabolismo , Oscillatoria/metabolismo , Picratos/análise , Amido , Biodegradação Ambiental , Reatores Biológicos , Compostos Fenólicos/análise , Nanopartículas Metálicas , Águas Residuárias , Grafite , Ferro
10.
Bioresour Technol ; 275: 352-359, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597397

RESUMO

This work studied the effects on the anaerobic digestion of sewage sludge by zero valent iron nanoparticles (NZVI) dosage. Biochemical methane potential tests were carried out with 5-9 mg/gVS (99.7%, 40-60 nm). The biogas yield increased from 132 (control) to 310 mL/gVS with 9 mg/gVS. The methane content increased from 63.2% (control) to 77.6% with NZVI, which corresponded to a maximum yield of 238 mLCH4/gVS with 9 mg/gVS. The maximum VS reduction was 19.6%. The highest INT-ETS activity (20.1-37.1 µgINTred/gVS·h) corresponding to the maximum values of sCOD was reached within the first days. NZVI decreased the ORP to -300 mV and increased the VFA's concentration (+2000 mg/L). The ORP-VFA-pH analysis showed that NZVI promoted the acidogenesis-acetogenesis without acidification. That is, NZVI was effective in intensifying the performance and stability of the process.


Assuntos
Nanopartículas Metálicas , Esgotos , Anaerobiose , Biocombustíveis/análise , Ácidos Graxos Voláteis/metabolismo , Ferro/química , Metano/biossíntese , Esgotos/química
11.
Bioresour Technol ; 276: 318-324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30641330

RESUMO

In this work, the effect of coupling ultrasonic pretreatment with dosing of zero-valent iron nanoparticles (nanoferrosonication, "NFS") to improve the anaerobic digestion of sewage sludge was studied. Biochemical methane potential tests were conducted at 15,000 and 25,000 kJ/kgTS and their combinations with 2 and 7 mgFe0/gVS. The biogas yield increased from 106 (control) to 143 (25,000 kJ/kgTS) and 308 mL/gVS with NFS (7 mgFe0/gVS + 15,000 kJ/kgTS). The methane content increased from 55.6 to 66%, and the maximum VS removal was 11.5% at 7 mgFe0/gVS + 15,000 kJ/kgTS. The results demonstrated that NFS was effective in intensifying the process.


Assuntos
Esgotos , Biocombustíveis , Ferro/química , Nanopartículas Metálicas , Metano/química , Esgotos/química , Ultrassom
12.
Environ Sci Pollut Res Int ; 25(6): 5474-5483, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214480

RESUMO

Alarming amounts of organic pollutants are being detected in waterbodies due to their ineffective removal by conventional treatment techniques, which warn of the urgent need of developing new technologies for their remediation. In this context, advanced oxidation processes (AOPs), especially those based on Fenton reactions, have proved to be suitable alternatives, due to their efficacy of removing persistent organic compounds. However, the use of ferrous iron in these processes has several operational constraints; to avoid this, an alternative iron source was here investigated: zero-valent-iron (ZVI). A Fenton-like process based on the activation of a recently explored oxidant-persulfate (PS)-with ZVI was applied to degrade an emerging contaminant: Amicarbazone (AMZ). The influence of ZVI size and source, PS/ZVI ratio, pH, UVA radiation, dissolved O2, and inorganic ions was evaluated in terms of AMZ removal efficiency. So far, this is the first time these parameters are simultaneously investigated, in the same study, to evaluate a ZVI-activated PS process. The radical mechanism was also explored and two radical scavengers were used to determine the identity of major active species taking part in the degradation of AMZ. The degradation efficiency was found to be strongly affected by the ZVI dosage, while positively affected by the PS concentration. The PS/ZVI system enabled AMZ degradation in a wide range of pH, although with a lower efficiency under slightly alkaline conditions. Dissolved O2 revealed to play an important role in reaction kinetics as well as the presence of inorganic ions. UVA radiation seems to improve the degradation kinetics only in the presence of extra O2 content. Radicals quenching experiments indicated that both sulfate (SO4•-) and hydroxyl (•OH) radicals contributed to the overall oxidation performance, but SO4•- was the dominant oxidative species.


Assuntos
Ferro/química , Sulfatos/química , Triazóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Oxirredução , Triazóis/química , Poluentes Químicos da Água/química
13.
J Hazard Mater ; 321: 681-689, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27694047

RESUMO

Abiotic and biotic processes can be used to remediate DDX (DDT, DDD, DDE, and DDNS) contaminated soils; these processes can be fostered using specific carbon-amendments to stimulate particular soil indigenous microbial communities to improve rates or extent of degradation. In this study, toluene and glycerol were evaluated as cosubstrates under aerobic and anoxic conditions to determine the degradation efficiencies of DDX and to elucidate possible degradation mechanisms. Slurry microcosms experiments were performed during 60 days using pretreated soil with zero-valent iron (ZVI). Toluene addition enhanced the percentage of degradation of DDX. DDNS was the main compound degraded (around 86%) under aerobic conditions, suggesting cometabolic degradation of DDX by toluene-degrading soil bacteria. Glycerol addition under anoxic conditions favored the abiotic degradation of DDX mediated by sulfate-reducing bacteria activity, where DDT was the main compound degraded (around 90%). The 16S rDNA metagenomic analyses revealed Rhodococcus ruber and Desulfosporosinus auripigmenti as the predominant bacterial species after 40 days of treatment with toluene and glycerol additions, respectively. This study provides evidence of biotic and abiotic DDX degradation by the addition of toluene and glycerol as cosubstrates in ZVI pretreated DDX-contaminated soil.


Assuntos
Biodegradação Ambiental , DDT/análogos & derivados , Glicerol/química , Ferro/química , Poluentes do Solo/análise , Tolueno/química , Aerobiose , Anaerobiose , DNA Bacteriano/genética , Microbiologia do Solo
14.
Environ Sci Pollut Res Int ; 24(33): 25500-25512, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27628922

RESUMO

Chlordecone (CLD), a highly persistent organochlorine pesticide commonly encountered in French West Indies (FWI) agricultural soils, represents a major source of contamination of FWI ecosystems. The potential of chemical reduction for remediation of CLD-contaminated soil has been investigated in laboratory pilot-scale 80 kg mesocosms for andosol, ferralsol, and nitisol from FWI banana plantations. Six cycles consisting of a 3-week reducing phase followed by a 1-week oxidizing phase were applied, with 2 % (dw/dw) Daramend® (organic plant matter fortified with zero valent iron) added at the start of each cycle. Complementary amendments of zero valent iron and zinc (total of 3 % dw/dw) were added at the start of the first three cycles. After the 6-month treatment, the CLD soil concentration was lowered by 74 % in nitisol, 71 % in ferralsol, and 22 % in andosol. Eleven CLD-dechlorinated transformation products, from mono- to penta-dechlorinated, were identified. None of them accumulated over the duration of the experiment. Six of the seven ecotoxicological tests applied showed no difference between the control and treated soils. The treatment applied in this study may offer a means to remediate CLD-contaminated soils, especially nitisol and ferralsol.


Assuntos
Clordecona/química , Recuperação e Remediação Ambiental , Inseticidas/química , Poluentes do Solo/química , Solo/química , Agricultura , Martinica , Oxirredução
15.
Environ Sci Pollut Res Int ; 24(33): 25534-25549, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498752

RESUMO

The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O2 or NO3- in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the highest dehalogenation efficiency (94 %). Principal component analysis as well as cluster analysis confirmed the trends mentioned above, i.e., the better performance of PAM over MD, and the unexpected no effect of the ZVI side filters on PCE removal and dehalogenation efficiencies. To the best of our knowledge, this is the first report on the combined treatment ZVI-biological of a water polluted with PCE, where the biological operation relied on simultaneous electron acceptors.


Assuntos
Ferro/química , Tetracloroetileno/metabolismo , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos , Desnitrificação , Elétrons , Filtração , Eliminação de Resíduos Líquidos/instrumentação
16.
Ciênc. Saúde Colet. (Impr.) ; Ciênc. Saúde Colet. (Impr.);16(1): 165-178, jan. 2011. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: lil-569037

RESUMO

In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We also discuss nanoscale zero-valent iron in detail. We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero - all in situ.


Nesta revisão, nos concentramos na limpeza ambiental e fornecemos um histórico e uma visão geral da prática atual, conclusões de pesquisas, questões em potencial sociais, ambientais, de saúde e segurança, bem como o direcionamento futuro para a nanorremediação. Também discutimos em detalhes a tecnologia de remediação ferro zero valente em nanoescala. Consultamos estudos de pesquisa na Web of Science e acessamos os relatórios disponibilizados ao público recentemente pela Agência de Proteção Ambiental dos EUA e por outras agências e organizações que abordam aplicações e implicações associadas às técnicas de nanorremediação. Também realizamos entrevistas pessoais com praticantes sobre remediações de locais específicos. Foram agregadas informações de 45 locais, parte representativa do total dos projetos em andamento, mostrando os nanomateriais utilizados, tipos de poluentes abordados e organizações responsáveis em cada local. A nanorremediação não apenas tem o potencial de reduzir os custos gerais da limpeza de locais contaminados em grande escala como também reduz o tempo de limpeza, elimina a necessidade de tratamento e descarte de solo contaminado e reduz algumas concentrações de contaminantes a níveis próximos a zero, tudo isso in situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA