RESUMO
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which activates intracellular accumulation of nonmetabolized glycosaminoglycans such as heparan sulfate and dermatan sulfate. This accumulation causes severe damage to several tissues, principally the central nervous system. Previously, we identified 187 IDS-protein interactions in the mouse brain. To validate a subset of these interactions, we selected and cloned the coding regions of 10 candidate genes to perform a targeted yeast two-hybrid assay. The results allowed the identification of the physical interaction of IDS with LSAMP and SYT1. Although the physiological relevance of these complexes is unknown, recent advances allow us to point out that these interactions could be involved in vesicular trafficking of IDS through the interaction with SYT1, as well as to the ability to form a transcytosis module between the cellular components of the blood-brain-barrier (BBB) through its interaction with LSAMP. These results may shed light on the role of IDS on cellular homeostasis and may also contribute to the understanding of MPS II physiopathology and the development of novel therapeutic strategies to transport recombinant IDS through the brain endothelial cells toward the brain parenchyma.
RESUMO
RESUMEN La yuca (Manihot esculenta) representa el pilar de la seguridad alimentaria para cerca de mil millones de personas, principalmente en las zonas tropicales. Uno de los factores limitantes de la producción de yuca es la bacteriosis vascular causada por la bacteria Xanthomonasaxonopodis pv. manihotis (Xam). Recientemente se identificó el gen RXaml el cual confiere resistencia parcial de yuca a cepas de Xam. RXaml codifica una proteína con un dominio LRR (Leucine Rich Repeats) extracelular y un dominio STK (Serina Treonina Kinasa) citoplasmático; estas proteínas son conocidas como RLKs (Receptor Like Kinases). En este estudio se realizó el tamizaje de una librería de ADNc de yuca mediante doble híbrido de levadura para identificar las posibles proteínas que interactúan con el dominio STK de RXam1. El tamizaje de 3x108 clones permitió identificar y confirmar cinco clones de ellos los cuales corresponden al mismo gen, el cual codifica para una proteína que presenta un dominio central de dedos de zinc CHY, seguido por un dominio C-terminal "RING finger" y un "Zinc ribbon" el cual fue denominado CRFE3-1 (Cassava RING Finger E3 ligase). La interacción entre STK y CRFE3-1 fue altamente especifica ya que se demostró también por doble híbrido que STK no interactúa con una E3 ligasa de Arabidopsis, altamente similar a CRFE3-1, así como tampoco CRFE3-1 interactúa con el dominio STK de un RLK de lechuga similar a RXam1. La identificación de CRFE3-1 sugiere que mecanismos de degradación proteica son importantes para regular la actividad de RXam1.
ABSTRACT Cassava (Manihot esculenta) represents food security support for nearly one billion people, mainly in the tropics. One of the limiting factors of cassava's production is cassava bacterial blight, caused by the bacterium Xanthomonas axonopodis pv. manihotis (Xam). Recently, the RXam1 gene was identified, which confers partial resistance to some Xam strains. RXam1 encodes a protein with an extracellular LRR (Leucine Rich Repeats) domain and a cytoplasmic STK (Serine Threonine Kinase) domain; these proteins are known as RLK (Receptor-like Kinases). In this study, a cassava cDNA library was screened using a yeast Two-hybrid assay to identify possible proteins interacting with the STK domain of RXam1. Screening of 3x108 clones allowed identifying and confirming five of them, which correspond to the same gene, and code for a protein that has a core domain of zinc fingers CHY, followed by a C-terminal "RING finger" domain and a "Zinc ribbon". This gene was called CRFE3-1 (Cassava RING Finger E3 ligase). It was also demonstrated by yeast Two-hybrid that STK does not interact with an E3 ligase of Arabidopsis that is highly like CRFE3-1. CRFE3-1 did not show interaction with the STK domain of an RLK of lettuce related to RXam1, indicating a highly specific interaction between cassava RXam1 STK and CRFE3-1. The identification of CRFE3-1 suggests that protein degradation mechanisms are important to regulate the activity of RXam1.
RESUMO
Tapping panel dryness (TPD) causes a significant reduction in the latex yield of rubber tree (Hevea brasiliensis Muell. Arg.). It is reported that TPD is a typical programmed cell death (PCD) process. Although PCD plays a vital role in TPD occurrence, there is a lack of detailed and systematic study. Metacaspases are key regulators of diverse PCD in plants. Based on our previous result that HbMC1 was associated with TPD, we further elucidate the roles of HbMC1 on rubber tree TPD in this study. HbMC1 was up-regulated by TPD-inducing factors including wounding, ethephon and H2O2. Moreover, the expression level of HbMC1 was increased along with TPD severity in rubber tree, suggesting a positive correlation between HbMC1 expression and TPD severity. To investigate its biological function, HbMC1 was overexpressed in yeast (Saccharomyces cerevisiae) and tobacco (Nicotiana benthamiana). Transgenic yeast and tobacco overexpressing HbMC1 showed growth retardation compared with controls under H2O2-induced oxidative stress. In addition, overexpression of HbMC1 in yeast and tobacco reduced cell survival after high-concentration H2O2 treatment and resulted in enhanced H2O2-induced leaf cell death, respectively. A total of 11 proteins, rbcL, TM9SF2-like, COX3, ATP9, DRP, HbREF/Hevb1, MSSP2-like, SRC2, GATL8, CIPK14-like and STK, were identified and confirmed to interact with HbMC1 by yeast two-hybrid screening and co-transformation in yeast. The 11 proteins mentioned above are associated with many biological processes, including rubber biosynthesis, stress response, autophagy, carbohydrate metabolism, signal transduction, etc. Taken together, our results suggest that HbMC1-mediated PCD plays an important role in rubber tree TPD, and the identified HbMC1-interacting proteins provide valuable information for further understanding the molecular mechanism of HbMC1-mediated TPD in rubber tree.
Assuntos
Caspases/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Hevea/fisiologia , Látex/química , Proteínas de Plantas/genética , Caspases/metabolismo , Hevea/genética , Proteínas de Plantas/metabolismoRESUMO
Polyamines are ubiquitous positively charged metabolites that play an important role in wide fundamental cellular processes; because of their importance, the homeostasis of these amines is tightly regulated. Spermine synthase catalyzes the formation of polyamine spermine, which is necessary for growth and development in higher eukaryotes. Previously, we reported a stress inducible spermine synthase 1 (ZmSPMS1) gene from maize. The ZmSPMS1 enzyme differs from their dicot orthologous by a C-terminal extension, which contains a degradation PEST sequence involved in its turnover. Herein, we demonstrate that ZmSPMS1 protein interacts with itself in split yeast two-hybrid (Y2H) assays. A Bimolecular Fluorescence Complementation (BiFC) assay revealed that ZmSPMS1 homodimer has a cytoplasmic localization. In order to gain a better understanding about ZmSPMS1 interaction, two deletion constructs of ZmSPMS1 protein were obtained. The ΔN-ZmSPMS1 version, where the first 74 N-terminal amino acids were eliminated, showed reduced capability of dimer formation, whereas the ΔC-ZmSPMS1 version, lacking the last 40 C-terminal residues, dramatically abated the ZmSPMS1-ZmSPMS1 protein interaction. Recombinant protein expression in Escherichia coli of ZmSPMS1 derived versions revealed that deletion of its N-terminal domain affected the spermine biosynthesis, whereas C-terminal ZmSPMS1 truncated version fail to generate this polyamine. These data suggest that N- and C-terminal domains of ZmSPMS1 play a role in a functional homodimer.
Assuntos
Espaço Intracelular/metabolismo , Multimerização Proteica , Espermina Sintase/metabolismo , Zea mays/enzimologia , Fluorescência , Folhas de Planta/metabolismo , Poliaminas/metabolismo , Ligação Proteica , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismoRESUMO
Mechanical wounding or treatment with exogenous jasmonates (JA) induces differentiation of the laticifer in Hevea brasiliensis. JA is a key signal for latex biosynthesis and wounding response in the rubber tree. Identification of JAZ (jasmonate ZIM-domain) family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid-derived hormone controls gene expression and related physiological processes in plants. In this work, the full-length cDNAs of six JAZ genes were cloned from H. brasiliensis (termed HbJAZ). These HbJAZ have different lengths and sequence diversity, but all of them contain Jas and ZIM domains, and two of them contain an ERF-associated amphiphilic repression (EAR) motif in the N-terminal. Real-time RT-PCR analyses revealed that HbJAZ have different expression patterns and tissue specificity. Four HbJAZ were up-regulated, one was down-regulated, while two were less effected by rubber tapping treatment, suggesting that they might play distinct roles in the wounding response. A yeast two-hybrid assay revealed that HbJAZ proteins interact with each other to form homologous or heterogeneous dimer complexes, indicating that the HbJAZ proteins may expand their function through diverse JAZ-JAZ interactions. This work lays a foundation for identification of the JA signalling pathway and molecular mechanisms of latex biosynthesis in rubber trees.
Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hevea/genética , Látex/biossíntese , Oxilipinas/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Dimerização , Resistência à Doença , Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Técnicas do Sistema de Duplo-HíbridoRESUMO
La bacteriosis vascular de yuca producida por la bacteria Xanthomonas axonopodis pv. manihotis (Xam) es una enfermedad limitante para la producción de yuca. Dentro de los primeros factores de patogenicidad identificados en esta bacteria se encuentra el gen PthB. La proteína PthB pertenece a la familia de efectores PthA/AvrBs3, que se caracterizan por presentar dominios NLS (Nuclear Localization Signal) y un dominio AAD (Acidic Activation Domain), lo cual sugiere que estas proteínas actúan como factores de transcripción. La identificación de las proteínas de yuca que interactúan con PthB permitiría dar luces sobre la función de esta proteína en la patogenicidad de esta bacteria. En este trabajo se clonó PthB en una fusión traduccional con el BD (Binding Domain) del factor de transcripción GAL4. Después de transformar este constructo en una cepa de levadura, se observó autoactivación de los genes reporteros, incluso a concentraciones altas de 3-AT. La eliminación del primer, segundo o de los dos NLS y del AAD no eliminaron la capacidad de autoactivación de los genes reporteros mediada por PthB. Estos resultados indican la imposibilidad de su utilización en un tamizaje de una librería de ADNc de yuca para identificar las proteínas que interactúan con PthB.
Cassava bacterial blight disease is caused by the gram-negative bacteria Xanthomonas axonopodis pv. manihotis (Xam), and constitutes one of the most important constraints for cassava production. One of the first determinants of pathogenicity identified in this bacterium is the PthB gene. The PthB protein belongs to the PthA/AvrBs3 family, characterized by the presence of Nuclear Localization Signal (NLS) and Acidic Activation (AAD) domains, suggesting that these proteins are transcription factors. The identification of cassava proteins interacting with PthB could give insights about the function of this protein in the pathogenicity of this bacterium. In this work we cloned PthB in the yeast two hybrid expression vector pLAW10, generating a fusion protein with the Binding Domain (BD) of the transcription factor GAL4. In this work, PthB was cloned in a translational fusion with Gal4-BD (DNA Binding Domain). After transforming this construct into a yeast strain, autoactivation of the reporter genes was observed, even at the highest concentrations of 3-AT. The deletion of the first, second or both NLS and the AAD did not eliminate the ability of autoactivation of PthB. These results show the impossibility of using PthB to screen a cassava cDNA library to identify the proteins interacting with PthB.
RESUMO
Stresses such as cold and drought can impair plant yield and induce a highly complex array of responses. Sugarcane (Saccharum spp.) is cultivated in tropical and subtropical areas and is considered a cold-sensitive plant. We previously showed that cold stress induces the expression of several genes in in vitro sugarcane plantlets. Here we characterize one of those genes, SsNAC23, a member of the NAC family of plant-specific transcription factors, which are induced by low temperature and other stresses in several plant species. The expression of SsNAC23 was induced in sugarcane plants exposed to low temperatures (4ºC). With the aim of further understanding the regulatory network in response to stress, we used the yeast two-hybrid system to identify sugarcane proteins that interact with SsNAC23. Using SsNAC23 as bait, we screened a cDNA expression library of sugarcane plants submitted to 4ºC for 48 h. Several interacting partners were identified, including stress-related proteins, increasing our knowledge on how sugarcane plants respond to cold stress. One of these interacting partners, a thioredoxin h1, offers insights into the regulation of SsNAC23 activity.
RESUMO
Stresses such as cold and drought can impair plant yield and induce a highly complex array of responses. Sugarcane (Saccharum spp.) is cultivated in tropical and subtropical areas and is considered a cold-sensitive plant. We previously showed that cold stress induces the expression of several genes in in vitro sugarcane plantlets. Here we characterize one of those genes, SsNAC23, a member of the NAC family of plant-specific transcription factors, which are induced by low temperature and other stresses in several plant species. The expression of SsNAC23 was induced in sugarcane plants exposed to low temperatures (4ºC). With the aim of further understanding the regulatory network in response to stress, we used the yeast two-hybrid system to identify sugarcane proteins that interact with SsNAC23. Using SsNAC23 as bait, we screened a cDNA expression library of sugarcane plants submitted to 4ºC for 48 h. Several interacting partners were identified, including stress-related proteins, increasing our knowledge on how sugarcane plants respond to cold stress. One of these interacting partners, a thioredoxin h1, offers insights into the regulation of SsNAC23 activity.
RESUMO
Mating-type genes control the entry into the sexual cycle, mating identity and sexual development in fungi. The mat A-2 and mat A-3 genes, present in the mat A idiomorph of the filamentous fungus Neurospora crassa, are required for post-fertilization functions but are not essential for mating identity. Their putative roles as transcription factors are based on the similarity of mat A-2 with the Podospora anserina SMR1 gene and an HMG motif present in the mat A-3 gene. In this work the yeast two-hybrid system was used to identify transcriptional activity and protein-protein interaction of N. crassamat A-2 and mat A-3 genes. We observed that the mat A-3 protein alone is capable of weakly activating transcription of yeast reporter genes; it also binds with low specificity to the GAL1 promoter sequence, possibly due to its HMG domain. Our results also indicate that mat A-3 is capable to form homodimers, and interact with mat A-2. Interference on yeast growth was observed on some transformants suggesting a toxic action of the mat A-2 protein. Our data on pattern of interactions of mat proteins contributes towards understanding the control of vegetative and sexual cycles in filamentous fungi.
RESUMO
Mating-type genes control the entry into the sexual cycle, mating identity and sexual development in fungi. The mat A-2 and mat A-3 genes, present in the mat A idiomorph of the filamentous fungus Neurospora crassa, are required for post-fertilization functions but are not essential for mating identity. Their putative roles as transcription factors are based on the similarity of mat A-2 with the Podospora anserina SMR1 gene and an HMG motif present in the mat A-3 gene. In this work the yeast two-hybrid system was used to identify transcriptional activity and protein-protein interaction of N. crassa mat A-2 and mat A-3 genes. We observed that the mat A-3 protein alone is capable of weakly activating transcription of yeast reporter genes; it also binds with low specificity to the GAL1 promoter sequence, possibly due to its HMG domain. Our results also indicate that mat A-3 is capable to form homodimers, and interact with mat A-2. Interference on yeast growth was observed on some transformants suggesting a toxic action of the mat A-2 protein. Our data on pattern of interactions of mat proteins contributes towards understanding the control of vegetative and sexual cycles in filamentous fungi.