Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1228552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693309

RESUMO

Microsatellites, also known as SSRs or STRs, are polymorphic DNA regions with tandem repetitions of a nucleotide motif of size 1-6 base pairs with a broad range of applications in many fields, such as comparative genomics, molecular biology, and forensics. However, the majority of researchers do not have computational training and struggle while running command-line tools or very limited web tools for their SSR research, spending a considerable amount of time learning how to execute the software and conducting the post-processing data tabulation in other tools or manually-time that could be used directly in data analysis. We present EasySSR, a user-friendly web tool with command-line full functionality, designed for practical use in batch identifying and comparing SSRs in sequences, draft, or complete genomes, not requiring previous bioinformatic skills to run. EasySSR requires only a FASTA and an optional GENBANK file of one or more genomes to identify and compare STRs. The tool can automatically analyze and compare SSRs in whole genomes, convert GenBank to PTT files, identify perfect and imperfect SSRs and coding and non-coding regions, compare their frequencies, abundancy, motifs, flanking sequences, and iterations, producing many outputs ready for download such as PTT files, interactive charts, and Excel tables, giving the user the data ready for further analysis in minutes. EasySSR was implemented as a web application, which can be executed from any browser and is available for free at https://computationalbiology.ufpa.br/easyssr/. Tutorials, usage notes, and download links to the source code can be found at https://github.com/engbiopct/EasySSR.

2.
Gene ; 844: 146819, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36029977

RESUMO

The reduction in the cost of DNA sequencing and the total time to perform this process has resulted in a significant increase in the deposit of biological information in public databases such as the NCBI (National Center for Biotechnology Information). The production of large volumes of data per run has culminated in the need to develop algorithms capable of handling data with this new feature and assisting in analyses such as the assembly and annotation of prokaryotic genomes. Over the years, several pipelines and computational tools have been developed to automate this task and consequently reduce the total time to know the genetic content of a given organism, especially non-model organisms, collaborating with the identification of possible targets with biotechnological applicability. In the case of automatic annotation tools, the accuracy of the results is widely observed in the literature, however, this does not excludes the manual curation process, where the information inferred in the automatic process is verified and enriched by the curators. This task requires a time which is directly proportional to the number of gene products of the target organism under study. To assist in this process, we present the ReNoteWeb web tool, endowed with a simple and intuitive interface, to perform the assembly enhancement process, with the possibility of identifying the missing products in the original genomic sequence. In addition, ReNoteWeb is capable of performing the annotation process for all products, based on information obtained from highly accurate external databases. The engine responsible for performing the data processing was developed in JAVA and the web platform uses the resources of the Yii framework. The annotation produced by this platform aims to reduce the overall time in the manual curation process. Twenty-three organisms were used to validate the tool. The efficiency was verified by comparing the annotation of these same organisms available in the NCBI database and the annotation performed on the RAST platform. The tool is available at: http://biod.ufpa.br/renoteweb/.


Assuntos
Genoma , Genômica , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular , Análise de Sequência de DNA , Software
3.
Comput Struct Biotechnol J ; 20: 3779-3782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891794

RESUMO

Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering.

4.
PeerJ ; 10: e13099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341044

RESUMO

Background: The SARS-CoV-2 pandemic reverberated, posing health and social hygiene obstacles throughout the globe. Mutant lineages of the virus have concerned scientists because of convergent amino acid alterations, mainly on the viral spike protein. Studies have shown that mutants have diminished activity of neutralizing antibodies and enhanced affinity with its human cell receptor, the ACE2 protein. Methods: Hence, for real-time measuring of the impacts caused by variant strains in such complexes, we implemented E-Volve, a tool designed to model a structure with a list of mutations requested by users and return analyses of the variant protein. As a proof of concept, we scrutinized the spike-antibody and spike-ACE2 complexes formed in the variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), by using contact maps depicting the interactions made amid them, along with heat maps to quantify these major interactions. Results: The results found in this study depict the highly frequent interface changes made by the entire set of mutations, mainly conducted by N501Y and E484K. In the spike-Antibody complex, we have noticed alterations concerning electrostatic surface complementarity, breaching essential sites in the P17 and BD-368-2 antibodies. Alongside, the spike-ACE2 complex has presented new hydrophobic bonds. Discussion: Molecular dynamics simulations followed by Poisson-Boltzmann calculations corroborate the higher complementarity to the receptor and lower to the antibodies for the K417T/E484K/N501Y (Gamma) mutant compared to the wild-type strain, as pointed by E-Volve, as well as an intensification of this effect by changes at the protein conformational equilibrium in solution. A local disorder of the loop α1'/ß1', as well its possible effects on the affinity to the BD-368-2 antibody were also incorporated to the final conclusions after this analysis. Moreover, E-Volve can depict the main alterations in important biological structures, as shown in the SARS-CoV-2 complexes, marking a major step in the real-time tracking of the virus mutant lineages. E-Volve is available at http://bioinfo.dcc.ufmg.br/evolve.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , Anticorpos Neutralizantes , Mutação
5.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946623

RESUMO

Structure elucidation with NMR correlation data is dicey, as there is no way to tell how ambiguous the data set is and how reliably it will define a constitution. Many different software tools for computer assisted structure elucidation (CASE) have become available over the past decades, all of which could ensure a better quality of the elucidation process, but their use is still not common. Since 2011, WebCocon has integrated the possibility to generate theoretical NMR correlation data, starting from an existing structural proposal, allowing this theoretical data then to be used for CASE. Now, WebCocon can also read the recently presented NMReDATA format, allowing for uncomplicated access to CASE with experimental data. With these capabilities, WebCocon presents itself as an easily accessible Web-Tool for the quality control of proposed new natural products. Results of this application to several molecules from literature are shown and demonstrate how CASE can contribute to improve the reliability of Structure elucidation with NMR correlation data.


Assuntos
Produtos Biológicos/análise , Ressonância Magnética Nuclear Biomolecular , Controle de Qualidade , Software
6.
Data Brief ; 23: 103806, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372451

RESUMO

DNA synthesis and homologous recombination can be used to simplify molecular cloning and to make synthetic biology easily accessible (M.J. Czar et al., 2009). However, the design of overlapping DNA fragments to construct large molecules is time-consuming and requires verification of several parameters to ensure that fragment synthesis is attainable, given the restrictions found in chemical synthesis of DNA. OVERFRAG is a web-based tool that generates overlapping DNA fragments to assemble either in yeast cells by Gap Repair (H. Ma et al., 1987) or in vitro by (D.G. Gibson et al., 2009) and In-Fusion (B. Zhu et al., 2007) methods. The fragments generated are suitable for chemical synthesis and molecular assembly. Some possible uses include cDNA cloning, design of chimeric antibodies and synthetic biology applications. Web tool is freely available at http://www.each.usp.br/digiampietri/overfrag.

7.
Front Genet ; 10: 146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894872

RESUMO

Co-expression analysis has been widely used to elucidate the functional architecture of genes under different biological processes. Such analysis, however, requires substantial knowledge about programming languages and/or bioinformatics skills. We present webCEMiTool, a unique online tool that performs comprehensive modular analyses in a fully automated manner. The webCEMiTool not only identifies co-expression gene modules but also performs several functional analyses on them. In addition, webCEMiTool integrates transcriptomic data with interactome information (i.e., protein-protein interactions) and identifies potential hubs on each network. The tool generates user-friendly html reports that allow users to search for specific genes in each module, as well as check if a module contains genes overrepresented in specific pathways or altered in a specific sample phenotype. We used webCEMiTool to perform a modular analysis of single-cell RNA-seq data of human cells infected with either Zika virus or dengue virus.

8.
BMC Bioinformatics ; 17(Suppl 18): 456, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105921

RESUMO

BACKGROUND: The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. RESULTS: In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. CONCLUSION: Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Mineração de Dados/métodos , Genoma Bacteriano , Bactérias/classificação , Bactérias/isolamento & purificação , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Análise de Sequência de DNA , Software
9.
Bioinformation ; 10(9): 602-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352731

RESUMO

UNLABELLED: MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. AVAILABILITY: http://lghm.ufpa.br/targetcompare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA